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CHAPTER 1. INTRODUCTION 

Overview 

Command and control (C^) is an essential part of critical ventures such as air 

traffic control, large-scale process management, disaster recovery, and military oper­

ations. Command and control communications and information (C^I) systems are 

assemblages of equipment, people, and procedures that extend the range and effec­

tiveness of C^. Although modern C^I systems are great improvements over those 

of the past, they do not fully utilize current technology and human potential. A 

major problem is that C^ effectiveness predicted through C^I analysis is often not 

replicated in the field [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. 

This paper proposes that a major impediment to reliable C^I design is subop-

timization due to poor communications among the specialties involved. It presents 

a method that reduces such suboptimization. Building on previous work to improve 

unity [11, 12, 13], the paper presents the focused measure of performance (FMOP) 

as a means to more closely link C^ effectiveness to C^I performance and pseudo-

confidence intervals (p.c.i.) as a way to assure that the apparent precision of C^I 

analysis will not exceed that of the C^ problem. It develops three sets of CMOPs 

and demonstrates how they may be used in numerous C^I situations. It also presents 

a method that uses FMOPs and a Taguchi-like approach to seek profitable areas of 
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analysis in the and C^I domains. 

The emphasis in this paper is on time effectiveness. Examples of offered loads 

and effectiveness specifications are based on the Joint Services Communications Data 

Base (CDB) [14]. The remainder of this chapter outlines relevant problems in C^I 

analysis and sunmiarizes past work to overcome them. It concludes by outlining 

the aspects of the problem addressed in the remainder of the paper. Chapter 2 

presents the proposed method together with evidence of its suitability to simulation 

C^I analysis. Chapter 3 explores the robustness of the hybrid distribution, a key time 

distribution model used in Chapter 2. It establishes asymptotic and other bounds 

on estimation bias, showing the hybrid FMOP is more robust than others based on 

mean time or two-parameter distribution models. Finally, Chapter 4 summarizes 

the report, draws conclusions, and suggests directions for further research. Three 

appendices detail 1) conversion of CDB data, 2) the nature of autocorrelation, and 

3) fine points of an extended example in Chapter 2. 

Background on C^I Systems 

The need for C^I systems 

Morris defines command and control (C^) as an interaction between two primary 

elements: the commander and the controlled unit [7]. Figure 1.1 shows how the C^I 

system supports C^ by transmitting and reformatting data, as needed, to provide 

effective communications between the command and the controlled unit. 

Since controlled units are often far away from their commander, a telecommu­

nications system is needed to convey messages in both directions. If there are many 
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C^I System 

Operational Environment 

Telecommunications Telecommunications 

Situation Picture 

Command Element 
(Decision Making) 

Controlled Element 
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Information 
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and 
Combining 

Command 
Reformulation 

and 
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Figure 1.1: The Interrelationships of C^ and C^I 
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data sources, the commander will also need ancillary units at the command post to 

filter and organize incoming data, presenting a situation picture. For example, an air-

traffic controller's display shows a composite representation of data from radars, IFF 

receivers, and tracking computers in an immediately-recognizable form. If there are 

many controlled units, the commander will need other ancillary units to decompose 

global commands into instructions for individual units. For example, if a Are chief 

orders fire-lighters to withdraw from a ridge, the staff would translate this command 

into individual orders for the several fire-fighting units in the vicinity. These ancillary 

units taken together with the communications subsystems form the C^I system; a 

communications and information system that supports C^. 

The complexity of C^I design 

Although we posses the technology to build very effective C^I systems, we have 

not yet done so. In 1985, White stated that this was due to informational chaos, 

the technological revolution, organizational chaos, and a lack of theory [8]. The 

situation has improved since, but not to the point of automating C^I system design. 

In 1989, White assessed the C^I problem in this way. 

Failures in C3 design process are, in part, evidence of too strong a faith 

in the symbolic side of systems analysis. We know it works, for we have 

seen it work. We know it doesn't work, for we have seen it fail. All we 

need now is the insight to anticipate both cases [10]. 

Others agree that the situation is better, but still mixed [15, 16, 17, 18, 19, 20]. 

One major problem is the need for diverse expertise. Command and control is 

partially a management problem and partially a leadership problem. Understanding 
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of command and control involves operations research, military expertise, ergonomics, 

human psychology, etc. Understanding of C^I, on the other hand, involves electronics, 

wave-propagation theory, cybernetics, etc. There is very little overlap of expertise 

in these fields, yet members of all specialties must cooperate to produce an effective 

C^I design. Other problems include the state of problem descriptions, current level 

of knowledge, and the lack of a uniform approach. 

Foundations of C^I Analysis 

MCES: modularization of the problem 

One important approach to the diverse expertise problem is the Modular Com­

mand and Control Evaluation Structure (MCES) [12]. At the 1984 Measures of Effec­

tiveness for C3 Evaluation Symposium, AFG Eaglet challenged the conferees to derive 

a plan to measure effectiveness. The upshoot of this challenge was the MCES. 

This structure does not actually specify measures of performance, but evaluates them 

instead. Since then others have continued to develop and use the MCES [17, 19]. 

One outstanding feature of the MCES is concept of system boundaries and an 

associated hierarchy of measures: 

• Measures of Force Effectiveness (MOFE) 

• Measures of Effectiveness (MOE) 

• Measures of Performance (MOP) 

• Dimensional Parameters (DP). 
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Dimensional parameters are static features of the C^I system such as weight, reso­

lution, and baud rate. Demands placed upon the C^I system do not affect them. 

Measures of performance are quantifications of C^I system behavior, such as trans­

portability, reliability, and throughput. This behavior depends upon DPs, the work­

ing environment, and demands of the supported system. Measures of effectiveness 

such as probability of detection, reaction time, and kill probability, quantify the abil­

ity of the system to perform its tasks. Measures of force effectiveness describe 

how well the entire unit performs. An example would be the probability of taking 

and holding a particular geographical location. 

The analyst's ultimate goal is to determine MOFEs. Although good methods 

exist to do this, they are very costly. The intermediate problem, therefore, is to find 

good candidate C^I systems using MOEs. The MCES concept, depicted in Figure 1.2, 

is to define MOPs so that each MOE is a function of the MOPs. This allows and 

C^I experts to coordinate their independent efforts while isolating the problem of 

estimating MOPs from that of estimating effectiveness. 

The key to this method is the MOP set and the MOP/MOE functions. Unless 

one can identify a measurable set of MOPs (0) and an acceptable MOP/MOE function 

(.F), one cannot set up the necessary interface between and C^I. Currently, there 

is no universal agreement on the exact nature of these MOP/MOE functions. If one 

were to estimate effectiveness values directly, one would have to repeat most of the 

work to consider other models of effectiveness. Using the MCES approach, one can 

consider one set of MOPs under several MOP/MOE functions, saving much of the 

simulation and analysis costs. (See Figure 1.2). 
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C^I Domain C Domain 

Possible 
MOE Values 

Possible 
MOP Values 

Figure 1.2: MOEs as Functions of MOPs 

CDB: communications requirements specifications 

One cannot proceed beyond dimensional parameters without first defining 

demands. Towards this end, the U.S. Army Signal Center at Ft. Gordon, GA de­

veloped and now maintains the Communications Data Base (CDB) [14]. The CDB 

details the communications needs of more than 300,000 communicator pairs. It spec­

ifies these needs independently of C^I capabilities. All proponents of the U.S. Army 

Training and Doctrine Command have verified the CDB and the Combined Arms 

Center has validated it. The data base now contains only unclassified records, so 

developers may use it without compromising military security. The Signal Center 

continually reviews the CDB and issues annual updates. It is the only sanctioned 

description of battlefield conununications needs for the U.S. Army. 
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Communications needs Command and control is a complex process. In 

addition, a command and control system consists of many interrelated C^ subsys­

tems. Beam classifies these subsystems in [21, ch. 6] by 1) the nature of the mission, 

2) the organization's structure, 3) interdependence with other subsystems, and 4) 

information flow. Although this is far from an all-encompassing model of C^, it does 

serve to describe C^ requirements and probable communications flow. 

Information flow patterns are derived from the other three classifications. The 

mission determines what activities are necessary. The organization's C^ structure 

will dictate who will communicate with whom. Communications needs among the 

different C^ subsystems arise from their interdependence. The volume of traffic will 

depend upon the environment and enemy force's actions as well. For example, a unit 

on a reconnaissance mission might normally maintain radio silence and report to its 

intelligence officer upon return. However, if it is trapped and in danger from the 

enemy, the unit leader might call to relay crucial information. 

The CDB describes the communications needs in terms of mission, organiza­

tional unit both between and within military units. The unit of specification is the 

needline, a specific origin-destination requirement under specific conditions, and in 

C^I-system-independent form. The CDB describes only needlines judged at least es­

sential to C^ activities. This limitation will remain since it focuses on requirements 

that most affect C^I performance under battlefield conditions. 

Effectiveness measures In addition to the load specification, the CDB 

contains information for effectiveness rating. The "Perishability" code {V in Ta­

ble 1.1) indicates the acceptable ranges of completion times for each needline. The 
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Table 1.1: Communications Data Base Perishability Codes [14, p. 9] 

Perishability Perishability 
Code {V)  Time Range Code {V)  Time Range 

0 > 8 HRS 6 1-10 MIN 
1 4-8 HRS 7 25-59 SEC 
2 3-4 HRS 8 11-24 SEC 
3 2-3 HRS 9 5-10 SEC 
4 1-2 HRS A 1-4 SEC 
5 10-60 MIN B < 1 SEC 

Table 1.2: CDB Cost of Failure Codes [14, p. 2] 

Code Description 
I Indispensable 
C Critical 
E Essential 

"Cost of Failure" code (Table 1.2) reflects the ability of a commander to complete 

the specified mission, if he or she does not receive that particular message in time. 

The "Purpose" and "Function" codes define the mission. However, because there is 

no standard way to assign numerical values to the "Cost of Failure" codes, the CDB 

does not precisely quantify the impact of the needline on the mission. 

Summary The CDB is a source of C^ requirements that is widely accepted 

and available. It describes C^I-independent loads and partially specifies effectiveness 

measures. Since it is understandable to both C^ and C^I experts, it acts as an 

interface between the two groups. The CDB will be the basis of all offered system 

loads and MOP-MOE conversion functions in this paper. 
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Timeliness: the effect of delay on value 

To some degree, response time always affects task effectiveness. Raatikainen 

claims that given the current state of technology, the response time has become "the 

most important single performance indicator" [22, p. 190]. Certainly, faster is better, 

but system designers must allocate limited resources to achieve the best possible 

overall effectiveness. Thus, they must ask "How much better?" 

Let V(t) represent the residual effectiveness of a completed task as a function of 

its execution time, t. Then, given a representative set of n tasks, an obvious measure 

of system effectiveness would be the mean value of executed tasks 

m 
E|v(r)i = EE[Vj(rj)] (i.i) 

i=i 

where is the residual effectiveness function and Tj the random completion time 

of Task i. Letting Ij = V(0) and 1j{t) = Vj{t)IIj leads to 

m 
E[V(T)| = 5:/j E[05(rj)] (1.2) 

j=l 

where Ij is the importance of Task ï, and^ 

= ÇTj{t)dFj(t) (1.3) 

is the mean time effectiveness or timeliness for that task. Equation (1.2) clearly 

shows the logical separation of and C^I functions. Task descriptions, Ij, and 

1j{t) are determined in the arena without considering the C^I system. Fj(<) is 

determined by C^I experts using specific C^I models. (1.3) shows a key interface 

^The Stieltjes integral is used in this paper because, unlike the Riemann integral, 
it is defined for functions that are not continuous [23, ch. 7]. 
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point. C^I experts cannot determine E[ ' l j {T j ) ]  without descriptions of the load 

and timeliness, while experts cannot determine it without accurate C^I models. 

Properties of timeliness Cothier and Levis defined timeliness to be "a 

systems ability to respond within an allotted time [24, p. 844]." Extending this idea, 

the C3INAT team defined it to be the mean effect of completion time upon task 

effectiveness. The timeliness function, T{t), predicts the effect of delay on the value 

of a task completed at time t. Using very minor assumptions, one can show four 

properties of T(t). By its definition, 

7(0) = 1.0. (1.4) 

Assuming delay never improves value, T(<) is a non-increasing function of t and 

^ . 0  ( U )  

whenever the derivative exists. Ignoring the possibility of negative value, it is rea­

sonable to assume that eventually the task will become worthless, or 

lim T{ t )=0 .  (1.6) 
C—+00 

Any right-continuous non-increasing function meeting these conditions can represent 

timeliness. Finally, because T{t) is bounded, (1.4) through (1.6) imply it cannot be 

a linear function of time. Beyond these statements, the exact nature of timeliness 

will depend upon the requirements for the task. 
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Problems in C^I Analysis 

The following describes the specific problems which this paper addresses. 

Inadequacy of mean time to predict E[T(T)] 

Because one can get accurate, robust estimators of E[T] in most situations, it 

is a conunon practice is to rank systems on the basis of mean time. The following 

example illustrates the inadequacy of this method to estimate E[T(T)]. 

Example 1.1 An analyst must choose between two communication links. The first is 

a single hop with a mean transmission rate of two messages per minute. The second 

is a two'hop link with each hop having a mean transmission rate of three messages 

per minute. Message initiations follow a Poisson distribution with a mean of one 

message per minute and transmission times are exponentially distributed. Further­

more, transmission times on the two series hops are independent and the buffers in 

both links are very large. 

The timeliness model is the two-parameter exponential model, 

Here is the time of initial decay and t is the mean of the exponential decay for 

1.0 0 < < < *0 

(1.7) 

times greater than (g. The values of <q and t, which differ by V class^, are listed in 

Table 1.3. 

^The parameters are chosen so that T2((^) = 0.9 and 7'2(</j) = 0.1. Full details 
of their determination are in Appendix A. 
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Table 1.3: Reference Times for T2(/;<,<o) with ^ = 0.9 and = 0.1 

Perishability {V)  Units H h *0 t 

0 Hrs. 8 24 7.233 7.282 
1 Hrs. 4 8 3.808 1.820 
2 Hrs. 3 4 2.952 0.455 
3 Hrs. 2 3 1.952 0.455 
4 Hrs. 1 2 0.952 0.455 
5 Min. 10 60 7.602 22.756 
6 Min. 1 10 0.568 4.096 
7 Sec. 25 60 23.322 15.929 
8 Sec. 11 25 10.329 6.372 
9 Sec. 5 11 4.712 2.731 
A Sec. 1 5 0.808 1.820 
B Sec. 0.046 1 0.000 0.434 

Mean time A commonly-studied MOP for time is E[T], the mean time. 

The one-hop link is a (M/M/1) queue with A = 1 and /xj = 2, so E[r] = 1 minute. 

The first hop in the two-hop link is also a (M/M/1) queue, but with A = 1 and 

H2 = 3. Burke's theorem [25] proves that the output of the first hop is a Poisson 

process with mean A, so the second hop is also a (M/M/1) queue. Therefore, E[r] = 

2/ {n2 — A) = 1.0 minute, and E[r] is the same for both links. 

Mean timeliness Effectiveness is a function of timeliness. From (1.3) and 

(1.7), the mean timeliness for the two-parameter exponential function is 

E[72(r i f , (o)]  =  F( ta)+r^p{^)dF(t) .  (1.8)  

Because completion time in the one-hop link is exponentially-distributed, with mean 

h = l/(Pl - z^), 

E[r2(r ; ( , (o) l«i]  =  '  -  «xp - (19)  
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Table 1.4: Mean Timeliness for Both Links in Example 1.1 

V 
Code 

E[T2iT-,V,T£,Tf^)], with 7^ = 0.9 and \ = 0.1 V 
Code One-Hop Link Two-Hop Link 

5 1.000 1.000 
6 0.889 0.894 
7 0.464 0.362 
8 0.239 0.112 
9 0.116 0.028 
A 0.042 0.005 
B 0.007 0.000 

Because the distribution of T on the two-hop link is ErIang-2 [26, p. 124] with mean 

02 = 2/(^2 -

E[7'2(r;<,<o)|^2l = ^ ~ ^xp + 

(^) h (è"" 9 
Table 1.4 lists mean timeliness values by message class, for the two links. 

Analysis Although the two links have the same mean completion times, they 

do not have the same mean timeliness. In addition, the relative dominance depends 

on the timeliness function. The two-hop link is as good or better if ^ < 6 for all 

messages, but worse if "P > 7. Thus, the analyst's preference for one or the other link 

will depend upon the mix of needlines and their relative importance. Since E[T] is 

the same in both links above, no function of E[T] alone can reflect their differences 

in timeliness. 
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Inadequacy of two-parameter distribution models 

Since the shape of F(() is a function of its variance, a two-parameter model of 

F(<) should lead to some improvement over using E[r] alone. Example 1,2 describes 

a more general case than Example 1.1 that will illustrate the degree of improvement 

as well as some remaining problems. 

Example 1.2 The message processing time in a complex system follows a gamma 

distribution with mean 9 and standard deviation a. Although the analyst can estimate 

B and <t closely, he or she does not know T is a gamma random variable. i4s before, the 

timeliness model is the two-parameter exponential model T2(<;<, (g) and the analyst 

wishes  to  compute  E[T2( ! r ) ] .  

Part a of Figure 1.3 illustrates the difference between the true mean timeliness 

and estimated timeliness^ in Example 1.2, assuming the analyst characterizes F(t) as 

exponential with mean 0. This error is shown as the exponential estimate less the true 

value as a function of 0 and the coefficient of variation Because the exponential 

distribution is based only on 0, it is logically equivalent to estimating E[T(T)] on the 

basis of E[T] alone. As expected, the possible error is huge, with a width of nearly 

one, the full range of E[T(r)]. Part b of this figure shows the error that exists if the 

analyst assumes a log-normal distribution. Certainly, the lognormal distribution is a 

great improvement over the exponential approximation, although it still can have a 

la rge  e r ro r  when  (p> 1 .  

^The details of these computations are in Chapter 3. 
^The coefficient of variation is used, rather than a, since it represents shape, 

independent of scale. 
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When y) is small, all distributions of non-negative numbers are similar, but when 

V? > 1, differences between the true distribution, Ft(0 and any two-parameter model 

can affect E[T(T)] significantly. Since one is practically limited to the first two 

moments of distributions in simulation, the potential error can be a serious problem, 

especially when variance is relatively high. 

Autocorrelation 

Economic constraints require users of C^I systems to share resources. Thus, 

queues will form from time to time, especially when the system is heavily loaded. 

This leads to completion times that are self- or autocorrelated. Autocorrelation, 

discussed in Appendix B, 1) causes initial conditions to persist, 2) causes seemingly 

independent runs to be correlated, and 3) frustrates efforts to estimate variance 

directly. The first two effects can either be viewed as part of the analysis or reduced 

in significance by sufficiently long warm-up times. Because E[X -t- K] = -f- E[K] 

even if X and Y are correlated, the sample mean will be an unbiased estimator of 

the process mean as long as the biased observations from the warm-up period are 

discarded. However, autocorrelation will always affect estimates of higher moments 

and attempts to determine the shape of T's distribution.. 

Because successive completion times are positively correlated, the sample vari­

ance of the output trace is less than Var(T). In addition, since its effect occurs most 

at congested times, it distorts the shape of F(t). This, serial correlation renders 

useless most traditional statistical analysis methods. Simulation studies of autocor­

related systems deal with means, percentages, or percentiles [27]. In general, it is 

very difficult to determine the true distribution of T. In addition, because one cannot 
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Bias 

8 6 

a. Using the Exponential Distribution 

Figure 

® 0 ® ^ 2 

b. Using the Lognormal Distribution 

1.3: Error Estimating E[TgCT; 1,2)], using the Indicated Distribution when 
T Follows a Gamma Distribution having Mean 9 and Coefficient of Vari­

ation 
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estimate <p directly, the bias in estimating E[T(T)] may be much greater than that 

shown above. 

Imprecision of data 

The CDB is a remarkable collection of information. However, although it has 

been checked by numerous experts, its entries have no definite range of precision. 

Because no parameter value can be known exactly, each reviewer assumed some 

degree of precision. Since this is not stated either in the documentation or in the 

database itself, one has no idea how precise the entries are. In addition, there is no 

statement of assumed distributions. Some needlines seem to be regularly scheduled 

and others would seem to occur more randomly, but no mention of variance is made 

in the database. Because the arrival and message-length distributions can greatly 

affect the distribution of time, one must speculate on their range to get accurate 

results. 

Current C^I analysis assumes the data is exact. Although C^I analysts often 

perturb the C^I model to reflect changes in the load due to changes in the scenario, 

they usually make no allowance for the range of precision in mean arrival rates, 

message length, etc. The following example illustrates this problem. 

Example 1.3 The analyst must choose between the two links of Example 1.1. The 

only design parameter is the index of the system. There are no environmental factors. 

The transmission rates, and ore exactly known, so there are no internal noise 

factors. However, A is only known to be within the interval (0.5,1.5). Finally, the 

analyst will again ttse the two-parameter exponential timeliness model. 
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Figure 1.4 shows a plot of E[T(r)] as a function of A, assuming V = 7. In 

this case, the range of A causes no concern, since Link 1 is superior to Link 2 over 

the entire interval. However, Figure 1.5 shows that when V = 6, the one-hop link 

is better when A is small and the two-hop when A is large. This range of A would 

lead to significant differences in effectiveness. The actual situation could be worse. 

For example, if there were two message classes, one with T'j = 6 and another with 

1^2 — 7, one could specify mixtures of these classes in which either link is superior 

for any A € (1.0,1.5). 

There are two serious consequences of this unknown data precision. First of 

all, the C^I analyst may not exercise the C^I model over enough of the potential 

load to discover system weaknesses. For example, in Figure 1.5, if the analyst simply 

looked at A < 0.9, he or she might conclude that the one-link option was better. 

Secondly, simulation results are often reported as confidence intervals. Again, in 

Figure 1.5, if the analyst examined results for the two links at A = 0.8 with a 

confidence interval width of ±0.05, he or she might execute the simulation models 

many times in order to show statistically the one-link system is superior. However, if 

the analyst exercised the models for A G [0.5,1.5), he or she would know that further 

simulation would be pointless. 

Overview of Work Presented in this Dissertation 

The working assumption is that deficiencies in C^I analysis are primarily due to 

suboptimization arising from poor communication between the and C^I commu­

nities. The writer proposes to improve this communication by 

1. increasing the degree of communication within the MOP-MOE function. 
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2. realistically considering the precision of the data and MOE functions, and 

3. presenting a scheme to identify those regions of the and C^I domain that 

need further refinement. 

Additionally, the proposed procedure is economical, robust, and usable in the pres­

ence of autocorrelation. 

Chapter two presents the proposed method and its development. Chapter three 

examines the robustness of the estimators used in the method. Finally, Chapter four 

summarizes the work, draws conclusions, and outlines directions for further research. 
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CHAPTER 2. THE PROPOSED METHOD 

Introduction 

This chapter presents two analytical tools that improve the reliability of the 

C^I modeling process by enhancing C^-C^I communications. The first tool is the 

focused measure of performance (FMOP), an extension of the MCES concept that 

more closely binds the and C^I communities. The second, the pseudo-confidence 

interval p.c.i., is used with an extension of Taguchi's method to translate model­

ing and evaluation uncertainty into intervals of C^I effectiveness. The end result is 

an extension of both the MCES and Taguchi's method that is a more reasonable pre­

dictor of C^I system effectiveness. The discussion centers on system-wide measures 

of time effectiveness. It assumes the situation is complex enough to warrant simula­

tion. It also presumes a sufficiently-defined set of specifications and effectiveness 

measures, similar to that found in the CDB. 

The following first presents FMOPs and details their use with exact models and 

independent trails. It then introduces the p.c.i. and an extension of the Taguchi 

method as a means of dealing with inexact models. Next, it suggests an approach 

that guides effort within the joint C^-C^I venture. Finally, the discussion turns 

to the special problems associated with the steady-state analysis in the presence of 

autocorrelation. 
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Measures of System Time Effectiveness 

Naturally, necessary FMOPs (and MOPs) for analysis are dictated by MOE 

functions. The following assumes some variation of one of the following two measures 

of system time effectiveness is the MOE of concern. As noted below, the mean 

timeliness for need lines of concern is a sufBcient FMOP for either. 

Mean system time effectiveness 

Suppose one has accurate effectiveness functions for all significant trafBc on a 

C^I system. Then, one logical measure of performance would be the mean system 

effectiveness: 

A ^ /A,\ 
Es(V(T)I ê g E%(7))] (2.1) 

where Xj is the arrival rate, l^(<) the time effectiveness function, and Tj the random 

completion time for the j-th needline. Here, A = is the over-all arrival rate 

among the needlines of concern, which may be less than the total system arrival rate. 

Using the timeliness function, one can express (2.1) as; 

EslV(T)l = E E|:^(T, )I (2.2) 

where I j  is the importance factor and Tj{ t )  is the timeliness function for Needline 

j. Thus, one may define mean system timeliness to be the normalized mean time 

effectiveness, or 

= S 
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m 

— i — . (2.3) 

É Ajf," 
j=i  

This measure indicates the time effectiveness of the system on a scale from zero to 

one. analysts can specify minimum system performance as single value, EMIN> 

Because (2.3) depends upon the ratios of importance levels, it is sensitive to their 

relative importance, rather than their values. 

Minimum system timeliness 

It may be that although experts can identify importance classes, they cannot 

precisely quantify a numerical relationship among them. In this case, a reasonable 

measure of performance would be minimum system timeliness: 

mins[T(T) |/| = , imn ERm-)]. (2.4) 
j9/jb=/ •' 

Here, one estimates timeliness by importance class, and minimum specifications 

would be given by class. 

Usefulness of needline mean timeliness 

In either case above, given specifications and C^I estimates of individual 

needline mean timeliness values, one may estimate Es[T(T)] through (2.3) and 

mins{T(r)|/] through (2.4) . The discussion now turns to estimates of individ­

ual needline mean timeliness values. To simplify notation, the subscript j will be 

dropped, unless more than one needline is considered simultaneously. 
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Needline Mean Timeliness as a FMOP 

The FMOP concept 

The MCES concept makes C^I analysis more efficient by segregating tasks by 

specialty and using parameters to make consideration of multiple MOE functions 

more efficient. However, traditional MOPs do not convey enough information between 

experts and C^I analysts. As illustrated in Figure 2.1, the focused measure of 

performance (FMOP) improves the degree of information flow, making it more useful 

in estimating effectiveness. Like a MOP, it is an observable system characteristic 

related to the quantity of interest. However, unlike a MOP, the FMOP also includes 

a region of interest (fl). For example, mean bit error rate is a MOP. The probability 

that there are more than 10® bits between errors is a FMOP with îî = [10®, oo) . 

In the case of the CDB and timeliness, each V code identifies a distinct (1 = 

as the interval of highest interest. A delay less than t£ has little effect on that 

task's effectiveness. A delay greater than will render the task's completion nearly 

worthless. 

In theory, measures of performance are system characteristics that are indepen­

dent of the context. In practice, they are not, because they are estimated by exercising 

a C^I model under a specific set of offered loads in a specific series of scenarios. One 

loses little by specifying the range of interest in C^I performance, as long as one does 

so in terms that are independent of the C^I system. Because experts specify the 

FMOP's region of focus and C^I experts determine the FMOP's value, it is a more 

complete form of communication than a MOP between these two groups. The error 

FMOP above tells analysts they can ignore errors in a system with a mean bit 
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Figure 2.1: How the FMOP Enhances Information Flow 

error rate of 10~^^ and need not consider a system with one of 10""^. 

C^I analysts can use the FMOP to predict effectiveness better than conventional 

MOPs. For example, if ^ = T(<^) = 0.9 and ^ = T(<^) = 0.1, then 

E[T(T)1 = J* 'T( t )JF( t )  +  T( t )dF( t )  +  T( t )dF( t )  

a 0.1 + /'* T{t)<lF{t). (2.5) 

The approximation (2.5) differs from true mean timeliness by no more than 0.1. 

Thus, an analyst would need to estimate how T(t) and F(t) behave on ÎÎ far more 

closely than in their tails. This is fortunate, since one usually knows little about the 

tail behavior of these functions. Because analysts do not know the region of greatest 

impact with unfocused MOPs, they may allow the behavior in the tails of the 

timeliness function to dominate the MOP estimate, leading to an arbitrarily large 

error in the effectiveness estimate. 
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Characteristics of mean timeliness 

For a single needline, mean timeliness is the mean value of the timeliness function: 

E[T(T)1 = T(t)dfT{t). (2.6) 

Using integration by parts and the fact that both functions are bounded, we get 

E(T(r)| = PT(W)- (2.7) 

The composite function Fr(T) = Yj< [t ^(r)] may not be well-defined, since T{ t )  

is not necessarily one-to-one. However, the function 

= max (<) (2.8) 
i9T(<)=r 

is. Thus, given and T{ i ) ,  one may define the probability distribution of time­

liness, Frfr) = Fr ^(r)]. Figure 2.2 illustrates typical plots of this function. 

Equation (2.7) shows that the area under Ft{t) in Figure 2.2 is 

E|T(n| = (2.9) 

This implies the timeliness function primarily determines the area of significance for 

evaluating E[T(r)] and the distribution of T is important only in its ability to predict 

the distribution of T(r). 

Given and but no other information about T{ t ) ,  detailed information 

about F(/) is of no value. Theorem 3.5 shows that if Ta(/) > 7^(() for all T, then 

E[Tû(T)] > E[T^(r)]. Therefore, from (2.6) 

E|T(T)| < l*'dF(t) + Tit^dFlt) + T^rdF(t) 

= pe + '^e{ph- H) - Ph) (2-10) 
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Figure 2.2: Sample Plots of the Probability Distribution of T(r) 

and 

E[T(r)| > + 

= ' ^m  + \ {ph-pe) -  (2.11) 

Unless one knows more about 7{ t ) ,  knowledge of the actual distribution of P(f), 

other than F(<^) = p£ and F(i^) = cannot be used to determine tighter bounds 

on  E[T(T)] .  

Single-probability bounds on timeliness 

Although bounding E[T(r)] from a single probability estimate seems terribly 

crude, it is an effective way to screen many systems. One reason for this is the 

large differences among systems. A second is the relatively low data-collection and 

computational load. A third is the undiluted power of statistical tests based upon 
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single parameters. Additionally, because this estimate makes the fewest assumptions 

about T(<), it produces the most widely-reaching statements about E[T(!r)]. 

Probability estimators Suppose {T(;i = l, . . . , re} is  a  random sample 

from some time distribution with finite moments. Given a specific time, tx, one may 

define {X^', i = 1,..., n}, where 

^ i  = | l  (2.12)  
[O i îTi>tx.  

Because the T{ are i.i.d., Nx = is a binomial random variable and EfX] = 

Px, the probability that T < tx .  Furthermore, Var(%) = px(l —p®)/"* The estimate 

nx/n, where nx is the number of Tj < tx, is an unbiased, maximum-likelihood 

estimator of px- In addition, Va,r{px) = (1 —Px)]/n. One may use this method 

to estimate any probability, including p£ and pf^. 

Bounds on mean timeliness From (2.7) 

EP'm) = -1*''F(t)dT(t) - r F(t)dr{ t )  

< %(:-%)+%- (2-13)  

Because (2.13) is a linear function of p^, it follows that an upper one-sided (1 — a) x 

100% confidence limit for (2.13) is; 

^t{nT)\%,h] = '2.14) 

where p^ is the upper limit end of a one-sided (1 — a) x 100% confidence interval 

for p^. For example, using the normal approximation to the binomial. 

+ % (2-15) 
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Figure 2.3: One-Estimate Bounds on E[T(T)]  for an Individual Needline 

where za is the value of the standard normal variate at a. 

Because Ej^['] < Emin is evidence that timeliness is unsatisfactory, this upper 

bound is an appropriate tool for eliminating poor systems. Similarly, one may define 

the lower bound 

(2,16) 

an approximate lower (1 — a) x 100% c.l. of 

Êi„[r(r)lr<,p£,r.] = T( Pi - \^a m - p e )  
(2.17) 

to identify superior systems. These bounds are pictured in Figure 2.3 

Two-probability bounds on mean timeliness 

Joint probability estimators The confidence intervals above assume the 

analyst estimates only one of p£ or If he or she uses both, the confidence intervals 
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are no longer exact. One could use a Bonferroni approximation, replacing Zq, by 

2(^/2) in (2.17) and (2.14) above, but this ignores the positive correlation of and 

Bes ides ,  t he  ana lys t  i s  usua l ly  in te res ted  in  jus t  one  o f  E"^[T(T) ]  o r  E~[r{T)] .  

Thus, the analyst would want two-probability bounds, rather than simultaneous one-

probability bounds. 

Again, assume t = 1,..., n} is a random sample from some time distribution 

with finite moments. Let 

X u  =  ( '  ( 2 . 1 8 )  

and 

X,, = 1' (2.19) 
I 0 otherwise. 

The total (#%, jV2) = ^2,i) ^ trinomial random variable, so 

E[%2] = Pi = Pr(T < t ^ )  and E[X2\  — P2  — Pr(<^ < T  < t f i ) -  The unbiased, 

maximum-likelihood estimator of pj is n^/n, where nj is the number of and 

that of P2 is «2/^' where n2 is the number of with t£ < Furthermore, 

Var(pi) = [pi(l -Pi)]/M, Var(p2) = [P2(l -P2)]/"' ^nd Cov(pi,p2) = -P1P2/"-

Because = pj and p^ = pj -f- p2 are continuous functions of pj and P2, the 

invariance property of maximum-likelihood estimators implies 

& = ^ (2.20) 

h = ^ (2.21) 

\G(%) = (2.22) 
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(2.23) 

(2.24) 

Estimates of bounds on mean timeliness Assume the analyst wishes to 

screen out systems for which E[T{T)] < Emin- Again, from (2.7) 

E|T(r)i = - f^mim 

< P£{i-T^-\- Pfi - Tfe) + %• (2-25) 

Because (2.25) is a linear function of (p^,p^), it follows that a maximum-likelihood 

estimator for the upper bound on mean timeliness is 

^  [nT)\Ti .%,Vl,Ph]  =  ( l -^)p£+(^-7&)pft+^.  (2.26)  

An approximate upper limit follows from the asymptotic normal distribution of 

maximum-likelihood estimators [28], with 

%r[Ê2+] = 

(2.27) 

Using similar arguments to that for shows that 

= Êî[T{T)\Te,pe] + P 2 \  (2.28) 

is a maximum-likelihood estimator of the lower bound on E[T(T)] with 

= (Tl - %f {li - %) 



www.manaraa.com

33 

Figure 2.4: Two-Estimate Bounds on E[T(T)] for an Individual Needline 

(2.29) 

Figure 2.4 illustrates the two-probability bounds on E[T(T)]. Figures 2.5 and 2.6 

show some sample estimates of E"*" and E~, respectively, using ten independent 

replicates of twenty observations each. The solid line in Figure 2.5 is the theoretical 

upper bound (2.10), while that in Figure 2.6 is the theoretical lower bound (2.11). 

The effect of and on estimates The primary concerns in the choice 

of and 'lf^ are 1) the ability of the community to establish their values and 2) 

the error in estimating (2.5). However, it is good to check the effect of these choices 

on bounds. First of all, 

ÊÏA-ÊFA = (1 - :%) (FT (2-30) 

Choosing ^ = 1 — ^ causes this difference to be independent of pj and depend on 

events within ÇÎ = (<^,(^). Choosing 'lf^ small, reduces the size of the difference and 



www.manaraa.com

34 

E1+ limit 
0.8 

E2+ limit 

max E[T11 

0.4 

0.2 

Replicate 

a. With A = 2.8, = 0.018 and = 0.594 

El + limit 
0.8 

E2+ limit 

0.6 max E(TiJ 

0.4 

0.2 

Replicate 

b. With A = 2.0, p£ = 0.264 and pf^ = 1.000 

Figure 2.5: Estimates of the Upper Bound on E [ T { T )  in Ten Replicates of Twenty 
Independent Observations Each, Knowing Only Tg = 0.9 and ^ = 0.1 



www.manaraa.com

35 
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E2-est 

min Ernj 

Replicate 

a. With A = 0.5, = 0.713 and pf^ = 1.000 

El-est 

E2-est 

mm E[Ti] 

2 3 4 5 6 7 8 9  
Replicate 

b.  With A =  \ .5 ,  p£ =  0.442 and pj^ =  1.000 

Figure 2.6: Estimates of the Lower Bound on E[T(T) in Ten Replicates of Twenty 
Independent Observations Each, Knowing Only — 0.9 and 9^ = 0.1 
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further emphasizes the events within fZ. Assuming = \ 

(' - ̂ ) K - ' I )  -  \  K - %)+ 
Noting that 

6 ^ , - %  =  ( ' - : ^ ) K + % [ ' - ' t ) ] '  
This means that unless pf^— p£> 0.5, a large ^ will cause the width of the interval 

of uncertainty to actually increase. Chapter 3 argues that pf^ — p^ is usually smaller 

than 0.5. Thus, in selecting 1^ and one should 1) select 7f^ = I — and 2) 

make as small as practical, subject of course to the primary concerns above. The 

assignment ^ = 0.9 and 7f^ = 0.1 is consistent with these recommendations. 

The hybrid estimator of timeliness 

The estimators above make no assumptions about the nature of either F(f) or 

T{t), excep t  a t  t£  and  t f ^ .  The  f ina l  e s t ima to r  a s sumes  a  par t i cu la r  d i s t r ibu t ion  fo r  T.  

Comparing Figure 2.7 to Figure 1.3 on Page 17, implies that, unless (p is very small, 

Eh['7'(T)] is a good estimator of E[T(R)]. As shown in Chapter 3, this distribution is 

a robust characterization of F(<) for estimating E[T(T)] over a wide range of actual 

distributions. Of course, this approximation is appropriate only when T(t) is known. 

The hybrid distribution As depicted in Figure 2.8, Fh(0 assumes a 

uniform distribution on [0, tg) and an independent exponential distribution with mean 
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Figure 2.7: Error Estimating E[T2(T; 1.0,2.0)] by EH[T(T)] when T  Follows a 
Gam m a  Di s t r i bu t i on  hav i ng  M e a n  0  a nd  Coe f f i c i en t  o f  Va r i a t i on  i p  

C for times greater than on [<£, cx)]. 

A Fh = 
1 -(l-p^)exp 

Its density, shown in Figure 2.9, is: 

A 

(l-p , ) ( i ) exp[ - (^ )_  

0< t  < tg  

t  >  t ^ .  

0< t< t£  

(2.33) 

(2.34) 

Note that determines fH(0 on [0, i^) and the conditional probability 

?r{T  < t \T >t^ }  = 1-exp (2.35) 

depends only on C. 
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Pi 

Task Completion Time ( t )  

Figure 2.8: The Hybrid Cumulative-Distribution Function 

Task Completion Time (Z) 

Figure 2.9: The Hybrid Density Function 
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Estimators of the hybrid parameters Assume {t^^i = is a 

random sample from the hybrid time distribution. Also, without loss of generality, 

assume that the sample as been re-ordered so the first nj of the are in , 

the next 7*2 in and the last *13 = n — nj — n2 are in [<^,00). To focus on 

times in the estimator assumes times greater than are censored^ at time 

Additionally, since the timeliness of cancelled calls is zero, such calls are counted 

as if they were completed in [(^,00]. The likelihood of the sample is [28]: 

ni+n2 
= n fH (<i;p£,C) X [1-FH(</i;P£,C)] 

2™ 1 

na 

| (L-P^)EXP|-^^Â-^JJ|  (2.36) 

The partial derivatives of the log-likelihood function are: 

51nZ( ( ' )  _  n \  n  — n \  

d p £  I - p £  
(2.37) 

d lnL{ ' )  NG n ih ' k )  /a  OON 

Setting these equal to zero and solving them yields: 

^^MLE = IT 

CM LE = (2.40) 
"2 

^That is, the fact that is used, but not the value of itself. 
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where 

A «L+»2 
Tqbs = E {ti - ie) + "3 {*h - *e) • (2.41) 

is the total of the "observed^" times greater than t£. Because d^\n L(-)/dp£ and 

8^ In L{-)/d(^ are non-positive, (2.39) and (2.40) are maximum-likelihood estimators. 

Clearly, unbiased. Also, 

E [CMLE] = E 
Toes 

I "2 

= E 
t=nj-f l  ^2 

+ E (2.42) 

The first term of (2.42) is the mean value o f T  —  t £  on so 

E 
i=ni-f 1 »2 

_  (» - '< ) ( ' -  Pe) (^) «"P (-^) ̂  

Ph-Pe  

-  {h  -  4) (1 - Pe)  Gxp 

Ph  -P i  
+ 

C (1 - Pe)  1 — exp (-^)L 

Ph-Pe  

Because the second term of (2.42) is (tji -(l —Ph) / (p^ ~ P£)> &ILE is also 

unbiased^. Since is the same as those used earlier and CMLE is the only 

2Cancelled calls are treated as they completed at time 
^See p. 80 for an alternate argument. 
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estimator of ( that will be used in this paper, from now on they will be referred to 

as simply and (, respectively. 

Again, one can use the asymptotically normal property of p£ to find intervals 

for p£. Although ( is also asymptotically normal, it converges very slowly. [28, 

§3.2] discusses numerous approximate distributions for estimates of the exponential 

distribution under this type of censoring. A good, but simple one is to treat 2n2C/C 

as approximately X^2n2+1)* K^ves good coverage with samples as small as ten. 

Thus an approximate (1 —a/2) X 100% lower c.I. for ( would be 2w2C/x^2n2+l) a/2' 

An estimator of mean timeliness Since T{ t )  is assumed known, the 

hybrid estimate of timeliness is simply the expectation, 

^H[ T iT ) \p£ ,  cy 

= T{ t )  

= <te\ + (i-p^)Em [T(r + <£)|c] (2.44) 

where m [T(r) |T < is the mean value of T{t) on [0, and Em [T(r + 

is the mean timeliness, assuming T  is an exponential random variable with mean ( 

and the timeliness function is T(t+ <£). Because T{t) is a non-increasing function, it 

follows that (2.44) increases with increasing p£. Increasing ( causes Em [•] decrease. 

Hence EH ^T(T) |p^, C] 's an increasing function of and a decreasing function of (. 

Being a function of maximum-likelihood functions, Ê[T(T)] is E [T(r) p£, C> ^^] • 

An approximate upper (1 — a) x 100% for EH[T(r)] can be computed as follows. 
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1. Noting that EH[T(r)] is an increasing function of p£ and that the marginal 

likelihood of is not affected by the choice of find a (1 — a/2) x 100% 

upper c.l. for using the entire sample. 

2. Noting that EH[T(T)] is a decreasing function of ( and that, given the 

conditional distribution of T on oo) is not affected by p£, find a 

(1 — a/2) X 100% lower c.l. for using only the observed > t£ and cancelled 

calls. 

3. Treat Eh T(T )  as the upper (1 —a) x 100% c.l. for EH[T(T)]. 

One can use similar procedures to approximate lower and two-sided c.i.s for EH [T(T)]. 

An example Substituting the T2(^; t ,  (g) timeliness model into (2.44) yields: 

EHlT(r;(,(o)|p«,<,Ofl = PeCi{t,to,T() + (2.45) 

where 

is the mean value of T2{t) on [0,<£). One may also use (A.2) and (A.3) to express 

the expectation in terms of <£, V}^, p£ and or equivalently, V, l£, 1%, p£ and 

Table 2.1 lists values of for all twelve V codes with several values of 

^ and Tf^. 

Figure 2.10 illustrates approximate 80% confidence intervals on E[T(T)] in the 

two-link path of Example 1.3. The intervals appear to be conservative, which is not 

surprising, considering the approximations used. They may not be as generous as 

they seem, however, since the distribution in Example 1.3 is not very unusual, and 
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Table 2.1: Coefficient Ci(') for the CDB Perishability Codes 

Tg = 0.90 Tg = 0.90 l £  = 0.95 
V  ^ = 0.10 = 0.50 \ = 0.10 

0 0.9951 0.9818 0.9989 
1 0.9976 0.9909 0.9994 
2 0.9992 0.9970 0.9998 

- 3 0.9988 0.9954 0.9997 
4 0.9976 0.9909 0.9994 
5 0.9878 0.9544 0.9971 
6 0.9780 0.9179 0.9948 
7 0.9966 0.9872 0.9992 
8 0.9969 0.9884 0.9993 
9 0.9971 0.9891 0.9993 
A 0.9902 0.9635 0.9977 
B 0.9491 0.9491 0.9748 

these intervals are designed for many cases. Figure 2.11 shows approximate 80% 

intervals for ten replicates of a simulation in a (M/D/1) system. The hybrid estimate 

has two intervals excluding the true mean and one nearly so, which is not surprising. 

Note that the nice, tight intervals based on E[T] alone in Part b are definitely biased. 

Some general comments on estimators 

Common properties All proposed estimators are robust and unbiased. In 

addition, being maximum-likelihood estimators, they possess the useful invariance 

property [29]. An approximate conservative confidence interval is shown for each, 

more exact intervals are suggested below. The primary objective in each case is to 

represent F(<) in such a way that E[T(T)] point estimates are unbiased and interval 

estimates are reasonably accurate. 
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Figure 2.10: Approximate 80% Confidence Intervals on E[T(T')] in Ten Replicates 
of Twenty Independent Observations Each from the Two-Link Path in 
Example 1.3, Using E||[T(T)] 
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Figure 2.11: Approximate 80% Confidence Intervals on E[T{T) ]  in Ten Replicates 
of Twenty to Forty Observations Each of a Simulation of a (M/D/I) 
Queue Using the Indicated Estimator 
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Robustness It is important that the method is robust. Probability estimates 

are completely insensitive to the shape of F{t), except at the selected point(s). In 

particular, if T = is a mixture of several distributions, the probability 

estimates for T  will still be accurate. Chapter 3 shows (p£, () has similar properties 

when used with the hybrid estimate. 

Because of this robustness, analysts need not worry about distinct distributions 

that arise from different event sequences within a given task, such as completion on 

the first call, completion on the second call, etc. Additionally, from (2.2), 

Es(V(r)) =  t  / J ^)e  [lit ((*,)] (2.47) 
6=1 \ / 

where k = l,...,c represents equivalence classes determined by importance and 

timeliness function values. Here /jj. and %(t) are the conunon importance weight 

and timeliness function, respectively, for equivalence class k. Robustness in the face 

of such complex time distributions for the T/^ can lead to a great savings in run-time 

data collection. In the CDB, for example, while there are hundreds of needlines, there 

are only thirty-six distinct COF and V combinations. 

Confidence intervals The c.i.s shown are approximate and should be used 

carefully. In determining estimator c.i.s, one should bear in mind that the end goal 

is to find good c.i.s for E[T(r)]. For example, the upper (1 — a) x 100% confidence 

limit for E[T{T) is E [T(T) jO*] where 0* is the solution to 

max E [T{T )  |0] 

subject to Pr |0 € 5 (©)} = 1 — a 

ë e S  ( 2 . 4 8 )  
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where 0 is a particular set of parameter values, S is a subset of the parameter 

space S bounded by 0. For example, a (1 - a) x 100% upper confidence limit for 

Ej^, is El [T(r) |p^], where is the solution to 

max E[T(T)|%,%] 

subject to Pr ^p f ^  <  = 1 - a 

0  < p <  1 .  ( 2 . 4 9 )  

In this case the problem is more simply stated as 

max pi^ 

subject to 53 (^i)ph ~ ^ = l-a 
i=0 

0 < p < 1. (2.50) 

One can find an exact interval, searching the curve 

"l"W+2 
—Z 1 = 1 — a 

2=0 

(2.51) 

for the point at which is maximum. 

When two parameters are involved, the probability constraints are more complex 

and one must conduct a two-dimensional search for the optimum. For example, an 

exact upper limit for E^ would be E^ |^T(T) |^,9^,pig,p^], where (p£,p^) is the 

solution to 

max ( 1  -  ̂)Pe  +  ( ^  -  ̂)Ph  
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subject to: Pr < p^} = 1 - a 

0 < P £ < 1  

P l < P h < ^ '  ( 2 . 5 2 )  

This entails a numerical search of the curve 

for a maximum of the objective function. 

Because all estimators are maximum-likelihood estimators, one may replace the 

probability statement in any of the problems by the likelihood ratio. In general, 

—2 In [L jL ~ where p is the number of parameters to estimate. Thus, 

the probability constraint for the problem can be stated 

ni In (p^)-I-n2 In (p^ - p^) + n3 In (l - p^) = )C{n,ni,n2,oi) (2.53) 

where 

/C(n,ni,n2,û() = nj In (nj)-1-n2 ln(n2) + (n - nj - n2)hi (n - - n2)-

2 
nln(n) ^ ^ (2.54) 

is a constant. Although this still entails a two-dimensional search, the function is 

much simpler. [30] describes methods to solve optimization problems of this type. 

[28] presents methods of solving likelihood-ratio problems. 

Summary 

Focused measures of performance provide information that is more relevant to 

E[T(T)] than unfocused measures of performance. The one- and two- probability 
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bounds provide useful information on E[T(r)] even though only percentiles of the 

timeliness function are known. The hybrid estimator will provide more precise es­

timates of E[T(r)] when T{t) is well-defined. Unfortunately, T{t) and other 

specifications are often not precisely known. The next section explores problems 

caused by such imprecision and presents methods to cope with them. 

Pseudo-Confidence Intervals 

Acceptable C^I systems provide adequate service over all reasonable combina­

tions of offered load operating conditions, and models of V(^). All modeling data 

is approximate to some degree. A statement that calls occur 20 times a day could 

mean, for example, "between 10 and 30 with subjective probability 0.95" or "between 

15 and 25 with subjective probability 0.99." Even if, as in the CDB, the param­

eter variance is not noted, it still exists. That is, as experts validate modeling 

data, each has his or her own interval and subjective probability standard. These 

experts use these unspoken standards in judging the validity of arrival rates, message 

lengths, etc. The problem is not that these standards exist, but rather that each 

expert uses different ones. The same can be said about the value functions. For the 

most part, the emphasis in analysis is on confidence intervals that arise from variation 

within simulation runs. As a result, although analysts tend to get precise estimates 

of the model performance, they have results of unknown validity, since the precision 

of modeling data and effectiveness functions are unknown. 
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Domain 

s.p.i. (fi) 

s.p.i. (C^ Load) 

s.p.i. (V(<) Models) 

s.p.i. (C^ Requirements) 

p.c.i (FMOP) 

C^I Domain 

Figure 2.12: How the p.c.i. Enhances Information Flow 

The concept 

The process starts by assigning intervals of subjective probability to all pa­

rameters and effectiveness functions. This is, of course, a gargantuan task, but as 

pointed out later, can be guided by C^I information needs. Large as this task is, it 

is essential, if one wishes to gauge the validity of a given C^I analysis. As depicted 

in Figure 2.12, the C^I analyst will then report a pseudo-confidence interval (p.c.i) 

for each FMOP to reflect the combined effect of both subjective and statistically-

determined probabilities on the results. Like a c.i., the p.c.i is an interval containing 

the true value with a given probability. However, unlike a true c.i., the p.c.i. is not 

based on random error alone. For example, suppose a half-width for E[T(T)] consists 

of: 

h  =  4-  - f -  +  +  (2.55) 

where 
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is the result of uncertainty in the limits on offered load, 

0/^ is the result of uncertainty in the limits on the operational environment, 

is the result of uncertainty in the C^I system's characteristics, 

is the result of uncertainty about the nature of the effectiveness function, 

is the result of uncertainty about the nature of the timeliness function, and 

is the result of random error. 

In this case, the first five components of h  are due to intervals with subjective proba­

bility. Only the last, is affected by run length. Through factorial design and sen­

sitivity analysis, analysts can determine reasonable estimates of each term of (2.55). 

Such an analysis will keep their efforts to reduce uncertainty on E[T(r)] in per­

spective and identify those parts of the over-all problem that needs attention. For 

example, if A = 0.25, = 0.20 and = 0.02, one needs to re-examine the 

effectiveness functions before attempting more simulation runs. 

Reflecting the range of the load 

Genichi Taguchi is a proponent of exercising models or processes over their ex­

pected range of conditions. He is well known for his practical experiment designs 

and emphasis on total cost. He describes the advantages of his methods in [31] and 

details his techniques in [32, 33]. Although some of his methods are controversial, 

his basic premises are not [34, 35, 36, 37]. 

The basic plan is to estimate performance at selected loads and specific condi­

tions that represent the expected range. From these results, analysts estimate the 
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response of system performance to changes in the load and environmental condi­

tions. For example, they may estimate E[7'(T)|6], where b is the level of battlefield 

intensity. However, the primary goal is to represent the full range of parame­

ter variation. Then, analysts can test C^I designs and system parameter settings 

that yield good performance over the probable range of conditions and timeliness 

functions. To this end, the analyst will use a factorial experiment design [38, 27, 31]. 

As shown in Figure 2.13, there are two parts to the factorial design. The inner, 

or parameter, array represents settings of C^I system parameters the analysts wish 

to test. The outer, or noise, array represents variations of the offered load and 

environment. Factors in this array represent extremes of arrival rate, service rate, 

the arrival and service distributions, environmental interference and projected human 

behavior. Because it is common practice to replicate the noise matrix at each point 

of the parameter array, analysts will want to use as few points as possible to represent 

extremes in the offered load. 

It is important to remember that the parameter and noise arrays play opposing 

roles. The analyst has complete control over the parameter array, since it represents 

system parameter settings. If he or she does not wish to explore a dimension of 

control, there is no analytical problem. On the other hand, the analyst has little 

control over the dimensions and levels of the noise array. For the most part, they 

represent factors that are either uncontrollable or uneconomical to control. Here the 

analyst can attempt to simplify the situation as much as possible, but cannot leave 

out a dimension simply because it complicates the analysis. 
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Design Matrix Noise Matrix Outputs 
Estimates 

of 
Loss 

Run 
Set 

Design 
Parameters 

<t>\ <l>2 

1 1 1 
2 1 2 
3 1 3 
4 2 1 
5 2 2 
6 2 3 
6 3 1 
7 3 2 
9 3 3 

Noise 
Factors 

Run 1/1 1/2 f/g 

1.1 
1.2 
1.3 
1.4 

1 1 2 
1 2 1 
2 1 1 
2 2 2 

Run VI V2 i/g 

9.1 
9.2 
9.3 
9.4 

1 1 2 
1 2 1 
2 1 1 
2 2 2 

n,2 
n,3 
n.4 

9̂,1 
^,2 
9̂,3 

3A 

z(S i )  

Z ( S g )  

Figure 2.13: An Example of a Taguchi Experiment Design 
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Reflecting effectiveness function variation 

Taguchi's method assumes the effectiveness function is well-defined. In the case 

of C^I analysis, however, it is not. Under the timeliness formulation above, there are 

three sources of variation in effectiveness. The first is variation in the values. The 

second is variation in the A^. Both of these affect the weighting in (2.3). The third is 

variation in T{t), the timeliness function. The effect of the first two can be evaluated 

by performing a sensitivity analysis on (2.3). The last, however, must be handled at 

simulation time, since it may affect the estimates of the individual E[^(7^)]. 

In the screening phase, the only significant effect of changes in T( t )  would be 

those that effect t£ or tf^. Thus, there are two classes of variation in T(t). One possible 

way to structure this is to first decide on intervals for and then independently, 

find intervals for shape parameters of T{t). Another is to decide on possible models 

of T{t), then define values of and = 7 ^(^)-

Since the bounds on E[T(T)] based on p£ and are monotonie, and since p£ 

and pf^ are increasing functions of t£ and respectively, one need only specify the 

upper and lower extremes of the range on each. Then (2.14) would become 

El 
+ 
a T (T )  

a J 
= (2.56) 

hoi 

where h~  is the lower limit of a one-sided confidence interval with subjective proba­

bility 1 — a. Because of the additional source of uncertainty, the pseudo-confidence 

interval has a mixed probability of about 1 — 2a. Similarly, one may define the lower 

bound 

Êi; Inn !%,?(+] = îpi- (2.57) 
<-a 
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Theroem 3.5 shows that T \ { t )  < T 2 { t )  for alH > 0 implies EfTj(T ) ]  <  E[T2(r)]. 

So, if one is using the hybrid approximation, one need know only the upper and lower 

bounds on T{t) over its range, especially in Given estimates of p£ and (, 

one can perform a sensitivity analysis on mean timeliness, using the bounds on T{ t ) .  

Constructing pseudo-confidence intervals 

The simplest pseudo-confidence intervals depend upon monotonie relations. For 

example, increasing the call initiation rate, mean service time, or call-back frequency 

will increase the load and should lead to lower values of E[T(T)]. In these cases, one 

can set up a noise array at the extremes of each of such parameters, one extreme of 

high, one of lowest load. Ordinarily, combining such independent elements might lead 

to a very low-probability combination. However, in C^I systems, external pressures 

often cause all load factors to move in the same direction. 

The pseudo-confidence interval will consist of the extremes of stochastic confi­

dence intervals, determined at the extremes of the ranges in the noise array. This 

assumes that variance does not increase sharply as one moves away from the ex­

tremes. Noting that variance tends to increase with the offered load in queueing 

systems and that timeliness will tend to be highest at the point of lowest load, this 

assumption is probably valid at the upper bound of E[T(T)]. but may not hold at 

the lower bound. However, since the distribution of noise factors within the range 

of expected variation is unknown, this adjusted extreme measure is more likely to 

be accurate than intervals based on the variance induced into E[T(T)] by the two 

extremes of load. 

An alternative is to select random levels of the noise factors. This is necessary 
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when the relationship between factors and performance is either unclear or known to 

be not monotonie. In this case, one defines pseudo-confidence intervals based on the 

observed variance in the output as a result of the random variation in the noise. This 

is a weaker method, first because it may be difficult to justify a particular distribution 

of the noise levels, and second, because this method makes it difficult to pin-point 

problem spots. 

An illustration 

The following example will be used to demonstrate some of the points so far. 

The details of analysis are in Appendix C. 

Example 2.1 The analyst is to select parameters for the simple communications 

network depicted in Figure 2.14- The nodes A, B, and C represent three information 

centers that must communicate to complete a given task. The nodes X and Y represent 

all other users of the network. The message traffic is of a single priority class, and 

consists of both voice and data. Table 2.2 describes this traffic. Mean call frequency 

and message length are assumed to be within ±20% of the stated values with subjective 

probability 95%. 

The given task is A, B, and C's role in Activity A. Each trunk channel can 

support either data at a 9600 baud rate or voice. Although the local networks have 

enough capacity to be of no concern in this situation, the capacity of each node might. 

These capacities are listed in Table 2.3 

The analyst's choices are summarized in Table 2.4. The analyst must choose 

between two call-back methods. The first is a conventional one in which the originator 

calls back after a random wait if the path is busy. The second signals the originator 
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when the requested call becomes feasible. The analyst mnst also choose whether to 

use an eight' or sixteen-channel trunk, and the mix of voice and data channels. The 

first two choices incur a monetary cost as well as a performance effect. The mix of 

channel types affects only performance. 

The systems will be compared on the basis of their mean system timeliness, 

£s[V(T)]; measured over all needlines participating in the given task. Timeliness 

will be measured using the T2{t) model, interpreting perishability codes as in Ta­

ble A.l on page 138. The t and tg values are assumed to be within ±20% of tabled 

values with subjective probability 95%. Table 2.5 lists the nominal and 95% subjective 

probability limits on importance weights. An acceptable system is one that retains at 

least 75% of its needlines' initial value. The analyst will seek an economical system 

that yields better or equal £s[V(r)] than others over the range of expected conditions 

and effectiveness measures. 

First screening In the screening phase, the analyst tested the system at 

three, six, and nine each of data and voice trunks. Also, he represented the range 

of offered load by a 2 x 2 noise array, representing all four combinations of extreme 

loads, keeping data and voice load distinct. Figure 2.15 shows p.s.i.s for p£ as a 

function of the number of data trunks. This implies that the three-trunk options 

perform poorly. Figure 2.16 shows that high data load has a greater affect on p£ 

than high voice load. Finally 2.17 shows the sensitivity of Es[T(T)] to the ratio of 

class importance values. Note that in the case of three data trunks, the effect of the 

different ratios is not relatively great, but when six or nine data trunks are used, the 

ratio differences almost double the p.c.i. 
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Figure 2.14: Communications Network for Example 2.1 
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Table 2.2: Needline Specifications for Example 2.1 

Fre­ Message Cost 

Need Origi­ Re­ Activ­ quency Length Perish- of 

Line nator ceiver ity Mode (Calls/Day) (kBytes) ibility Failure 

1 A B A V 24 8.0 5 I 

2 A B A V 4 72.0 3 I 

3 A B A D 960 20.0 6 C 

4 A B C D 240 75.0 5 C 

5 A C A V 4 32.0 4 I 

6 A C A D 960 32.0 6 C 

7 A C C D 480 16.0 6 E 

8 A X A V 4 48.0 3 I 

9 A X C D 4800 4.0 8 C 

10 A Y C D 2400 8.0 7 C 

11 B A A V 24 0.4 5 I 

12 B C A V 48 2.0 5 I 

13 B C A D 1440 4.0 6 I 

14 B C C D 720 12.0 5 C 

15 C B A V 48 1.6 6 I 

16 C B 0 D 1200 4.0 6 C 

17 C A A D 480 8.0 5 C 

18 X A A V 12 2.0 4 C 

19 X Y A V 480 4.0 8 I 

20 X Y A D 9600 4.0 9 I 

Table 2.3: Node Characteristics in Example 2.1 

Node Capacity On Task? 
A 10 Yes 
B 5 Yes 
C 5 Yes 
X 20 No 
Y 20 No 
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Table 2.4: Network Options and Monetary Costs in Example 2.1 

Option Call-back System Trunk Capacity Relative Cost 
1 Random 8 1.00 
2 Scheduled 8 1.05 
3 Random 16 1.50 
4 Scheduled 16 1.55 

Table 2.5: Cost of Failure Values for Example 2.1 

Cost of Failure Value 

Code Description Minimum Nominal Maximum 
I Indispensable 2.0 4.0 16.0 
C Critical 1.4 2.0 4.0 
E Essential 1.0 1.0 1.0 
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Number of Data Trunks on Es[T(T)] During Preliminary Screening 

In spite of the uncertainty in the load and V(<), the analyst can conclude 

1. More than three data and voice trunks will be needed. 

2. The eight-trunk option will probably work. 

3. The variance in the data load affects timeliness greatly, and 

4. The data and voice loads interact. 

Second screening In the second set of runs, the analyst decided to test the 

eight-trunk option, but kept data and voice load distinct. In addition, the analyst 

sought further information on four high-traffic needlines. Table 2.6 shows the 

revised information at this stage. Finally, he included a "baseline" model, in 

which the number of trunks was not a constraint, for comparison. 
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Table 2.6: Results of Investigating the Range of 
Load Factors 

Needline 
Range Factors for âa and 0s 

Needline New Lower Limits New Upper Limits 
6 0.80 1.20 
10 0.90 1.10 
19 0.95 1.05 
20 0.95 1.05 

Figure 2.18 illustrates pseudo-confidence intervals for Eg". The symbol "99" 

represents the baseline model. It appears that the eight-trunk option is satisfactory 

and that any of 4, 5, or 6 data trunks will perform equally-well. It also appears that 

the two call-back modes perform equally-well. Furthermore, Figures 2.19 and 2.20 

show that uncertainties in / values and the exact values o(t£ and have much larger 

effects than those observed in the analysis, indicating that further analysis without 

tightening up these functions is pointless. 

Problems of statistical coverage 

Of course, intervals with subjective probabilities present problems of validity and 

acceptance. However, even if the individual intervals are accepted, the resulting 

C^I intervals may be difficult to work with. For example, The CDB specifies arrival 

rates and message lengths. If these values are stated to within ±10% with subjective 

probability 0.95, then the same can be said of needline mean interarrivai times and 

mean service times. That is, if subjective probability is 0.95 that there are between 

18 and 22 calls per hour, the mean interarrivai time is between 2.73 and 3.33 minutes 

with the same subjective probability. However, some C^I factors may depend upon 

multiple factors. For example, suppose the mean time between recall attempts 



www.manaraa.com

63 

EainCD] 
1.0 

0.9 

0.8 

0 7 4  

CB Mode: R S 

0. Thinks: 4 

R S R S 

1 1  1 1  n  t  
6 99 

Figure 2.18: 95% Confidence Intervals for the Effect of System Parameters on Eg 
From the Second Screening 

Es[n(D] 
1.0 H 

0.9 

0.8 

0.7 4 

0 0 0 
I. Ratio: 2 5 7 

5 0 5 

D. Trunks: 4 

0 0 0 
2 5 7 
5 0 5 

0 0 0 
2 5 7 
5 0 5 

6 

0 0 0 
2 5 7 
5 0 5 

h j  
99 

Figure 2.19: 95% Confidence Intervals for the Effect of Timeliness Functions over 
the Range of Timeliness Models and System Parameters on Eg From 
the Second Experiment 



www.manaraa.com

64 

Esrno)] 

t l & t h O I I  0 1 1  o i l  o i l  
Factor èÔ2 8 0 2 8 0 2 8 0 2 

0.8 

0.9-

D. Trunks; 4 5 6 99 
074 

Figure 2.20: 95% Confidence Intervals for the Effect of Importance Ratios over the 
Range of Timeliness Models and System Parameters on Eg From the 
Second Experiment 

is 0aU/I, where 0a is the initial call frequency, U the urgency of the call, and / the 

importance of the call. If each can vary ±10% with subjective probability 0.95, then 

9r can vary from —26% to +34% with subjective probability about 0.85. The result 

can be very wide intervals of low confidence. 

The following describes the a basic plan, first from the perspective of overall 

three-phase problem-solving process, then as a repetitive process within each phase. 

These two views are illustrated in Figures 2.21 and 2.22. It also compares this 

approach to that of the MCES and Taguchi. 

Using the Proposed Devices to Control Analysis 
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Figure 2.21: Overview of the Proposed Method 
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Overall plan 

The method involves a sequence of iterative cycles which 1) make closer and 

closer approximations to either Es[T(r)] or mins[T(T) |/], 2) make more and more 

assumptions about F(<) and T(<), and 3) are more costly. The goal is to arrive 

at results that are as acceptable and economical as possible, given the state of the 

data. C^I system analysis usually consists of three distinct phases: modeling, 

screening, and evaluation. Figure 2.21 illustrates the overall plan for the last two 

stages. Although estimates are rough in the initial screening, they apply to all V(<) 

and F(<) models. In the secondary screening, one tests results for a range of V(<) 

models, but still makes no assumptions about F(<). In the final stage, analysts must 

make assumptions about both V(/) and F((). If all goes well, one ends up with at 

least one good system, but if not, one can at least identify the reason none is found. 

Procedure details 

Figure 2.22 depicts the events that occur within each phase, including modeling, 

in greater detail than in Figure 2.21. Analysts repeat this loop until the phase 

problem is resolved. At the end of each repetition, they ask "What can we possibly 

gain from further analysis?" Depending on the answer, they will refine and repeat 

analysis within the current phase, continue to the next phase, return the problem to 

the analysts for further refinement, or terminate the analysis. 

The procedure in Figure 2.22 begins with a formulation of the problem. 

data consists of specifications, such as offered load, the scenario, and effectiveness 

measures, in C^I-system-independent form. The C^I data consists of equipment 

models and possibly data from earlier C^I analyses. The C^l analysts reformulate this 
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data into a self-contained C^I simulation model and scenarios, collectively referred 

to as the I problem. 

Because simulations take time and money to develop and run and because anal­

ysis is expensive, the C^I analysts next attempt to bound the results. The goal is 

to determine if the problem is sufficiently well-stated to yield clear results. All data 

is given in the form of intervals. This step checks that these intervals are narrow 

enough to allow meaningful output intervals. If this is not true, the C^I analysts will 

need to return the problem to the experts for further refinement. 

The action step will generate new C^I data. The C^I analysts then analyze this 

new data, together with the original data, to attempt to find results. If they find 

conclusive results, such as "System A is the only one that provides an acceptable 

grade of service," they report them to the experts. If results are not conclusive, 

the C^I experts determine whether or not further C^I analysis could be profitable. 

If so, they reformulate the problem and either repeat the current phase or go on to 

the next. If further I analysis would not be profitable, they return the problem to 

the experts for further refinement. 

Comparison of the proposed method to the MCES 

The method is similar to the MCES approach in that the C^I analysts estimate 

MOPs, which the analysts convert into effectiveness measures. This separation 

of functions assures that each task is undertaken by those most qualified to handle 

it. However, the method goes beyond the MCES by using FMOPs to increaise the 

amount of information passed between the C^ and C^I community. This improves 

concurrency and helps the C^I experts concentrate on types of analysis that will be 
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most useful to the experts. 

Comparison of the proposed method to Taguchi's method 

The method is similar to Taguchi's method in that it utilizes factorial design and 

exercises the system over a range of expected operating conditions. It also consid­

ers all operational conditions and system characteristics intervals, rather than point 

values. However, unlike Taguchi's method, it continually asks the value of further 

analysis and considers the possibility of returning a problem to the group. In this 

way, it attempts to find the most profitable areas to work in, whether they be problem 

description, simulation and analysis, or refinement of effectiveness measures. Finally, 

while Taguchi's method uses a well-defined loss function, the proposed method con­

siders the loss function poorly defined. This extension allows one to work when 

quality is only approximately defined. The use of FMOPs allows one to measure the 

sensitivity of results to changes in the loss function without additional simulation. 

Adaptations to Steady-State Analysis in Autoregressive Systems 

The analysis above assumes the observations are independent. If one is observing 

dedicated C^I systems or making a transient analysis, this is a reasonable assumption. 

However, if several needlines share common resources and one wishes steady-state 

averages of system effectiveness, then this is no longer a viable assumption. Output 

sequences of task completion times in networks tend to be highly correlated, especially 

if the system load is high. 
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Basic method 

Fortunately, all parameter estimates above are based on probabilities and means. 

This avoids most of the complications due to autocorrelation. The chief problem is 

how to adjust for the artificially low estimates of estimator variance. The basic 

procedure is similar to the conunon "method of batch means," with a few variations. 

Its main steps are: 

1. Truncate the initial part of the output record, to minimize the effect of initial 

conditions and possible covariance between independently-seeded runs, 

2. Estimate the lag correlation (£) and form batches of length 5£, 

3. Estimate the variance of the estimator either as if the batch means are ap­

proximately normally-distributed, or based on other assumed properties of the 

estimator, and 

4. Estimate confidence limits on bounds for Es[T(T)] either from the bounds of 

the basic estimators or as functions of estimators with assumed properties. 

The following describes adaptation of the devices above to this method of coping 

with autocorrelation. Although parts of this approach are open to criticism, these 

are criticisms of the basic "method of batch means" rather than the devices proposed 

above. That is, the proposed devices may not make this method work better, but at 

least they do not make matters worse. 
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Initial truncation 

A key assumption is that enough of the beginning of the trace has been deleted 

that the remaining trace is essentially a stationary random process. This is prob­

ably the most difficult part of the method, since there are no universally-approved 

truncation tests [39, 40, 41]. The method used in the examples is to 

1. Estimate critical lag (£) through tables of autocorrelation [42]. Call this esti­

m a t e  L q .  

2. examine a trace of non-overlapping batch means of about L q/ 5  observations 

each from five independently-seeded runs of about IOOZTQ in length. Let NQ 

be the point at which the initial bias and correlation between runs appears to 

fade. 

3. Test the adequacy of NQ, using Schruben's F-ratio test (See Appendix B for 

details). If too small, let = 2A^ and test Ni. Repeat, extending the runs 

if necessary. 

Point estimates 

If the process {T*^} is stationary, then the are identically, distributed, but 

d e p e n d e n t .  B e c a u s e  t h e  r e l a t i o n  E [ %  - { • ¥ ]  =  E [ X ]  - t -  E [ y ]  h o l d s  w h e t h e r  X  a n d  Y  

are correlated or not, the average of successive observations from a stationary random 

process is simply E[r]. Estimates of px are means of the process {Xj}, where = 1 

if Ti < tx, and zero otherwise. If {T^} is stationary, then so is and the same 

principle applies. 
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It is important to note that the estimates are of the distribution of the sta­

tionary process, not its elements. Let Gj(Si_j) represent the 

components of the process. The represent the independent element of the pro­

cess and the Gj{Si^j) represent the effect of autocorrelation on the Tj. Because 

the process is stationary, j)] = 0 and E[r] = E[5]. However, the 

effect of Gj{S^_j) is to distort the shape of the distribution. For example, in 

a (M/M/l) queue, although the distribution of S is exponential with mean 1/E[r], 

the autocorrelation will make larger time values more probable in the distribution of 

T than in that of 5. 

This is not a problem in assessing C^I performance because it is the distribution 

of T is of interest, rather than that of S. It is T that affects performance, not 5, since 

the shift in probabilities will also cause a shift in expected timeliness. Estimators 

of E[T(T)) based on probability estimates of T are unbiased since they are baaed 

on actual counts of in selected intervals and make no assumptions about the 

distribution of T. The hybrid estimator, based on ( will be a biased estimator 

of E[T(r)] because of its assumption of exponential times. However, as shown in 

Chapter 3, the bias due to the shape of the distribution would be very small. 

Estimator variance 

The remaining problem is that of the low variance of the T^. As shown in Ap­

pendix B, each observation provides only a fraction of the information an independent 

observation would. The approach is the '^method of batch means" is to estimate the 

lag correlation £ in the output record, then compute the means of adjacent, but 

non-overlapping batches of size 5jC. The nfbC batch means are then treated as 
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uncorrelated, normally-distributed observations. 

A variation is proposed to estimate probabilities. It uses the presumed structure 

of the estimator, but adjusts the apparent sample size. Thus, 

where n is the number of observations in the steady-state portion of the output. This 

uses the information about the distribution of px, which the basic method does not. 

In addition, since one need not actually calculate the batch means, it is somewhat 

more efficient. Var(C) was estimated from the variance among the n/(5£) individual 

batch means, which is the usual way in this method. 

Another variation is to simply not batch [43]. It is difficult to tell in advance 

exactly how may observations to generate. One can estimate the variance of p from 

its value and the number of independent runs. A single high-intensity segment can 

greatly increase c. In one batch of 120 independent simulated 24-hour periods, this 

researcher got c estimates ranging from 20 to 200. If c is too large, the output is 

too highly averaged, if too small, observations are too dependent. Either will reduce 

variance estimates. In addition, the differing C estimates produce differing numbers 

of observations per run, complicating ANOVA. 

One needs at least five replicates to detect initial bias. In some cases, this 

may be enough observations to provide good power. Another option is to select 

C = max^j where Cj is the estimator for the j-th run. This argues that lag 
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correlation is a system, rather than a run, characteristic. Table 2.7 is the result of 

selecting C so that each run generated 20 observations. The tables entries are esti­

mates based on the 100 observations total in five replicates. The standard deviation 

estimates are remarkably consistent, indicating promise to this approach. However, 

the estimate of variance within each run was less than that between runs, indicat­

ing some problem. One possibility is that the selected c was too large. Another is 

that some higher-order correlation is at work, which is too subtle to be detected, but 

significant, meaning c is too small. 

Summary 

Two key devices are proposed. The first is the use of focused measures of perfor­

mance to improve communications between and C^I regarding regions of great­

est importance to system effectiveness measures. The second is the use of pseudo-

confidence intervals to transfer what is not known about the problem to the C^I 

analyst and back again to the expert. It is shown that one can differentiate among 

C^I systems with only partial information, but cannot determine the quality of 

C^I analysis without knowing the quality of the problem formulation. 

These devices, used with a strategy of balancing necessary assumptions with 

needed information can not only make C^I analysis a more reliable predictor of actual 

C^I system behavior, but can also identify parameters that have the greatest effect 

on the resolution of the C^I analysis. In general, they direct and C^I specialists 

into mutually-beneficial areas of analysis. 

. These devices expose some problems and leave others unresolved. The prob­

lem of subjective probabilities is very diflRcult to resolve, but as noted above, exists 
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Table 2.7: Results of the Initial Screening 

Call Back Voice Data Voice Data Observed Values of 

Obs Mode Trunks Trunks Load Load Max Min Mean S 

1 R 3 3 0.933 0.688 0.814 0.044 

2 R 3 3 1 0.853 0.600 0.763 0.043 

3 R 3 3 1 0.894 0.705 0.812 0.043 

4 R 3 3 1 1 0.849 0.669 0.768 0.037 

5 R 3 9 0.937 0.674 0.824 0.047 

6 R 3 9 1 0.900 0.725 0.815 0.029 

7 R 3 9 1 0.900 0.719 0.825 0.039 

8 R 3 9 1 1 0.865 0.665 0.814 0.028 

9 R 6 6 0.931 0.697 0.824 0.044 

10 R 6 6 1 0.875 0.706 0.815 0.028 

11 R 6 6 1 0.931 0.731 0.833 0.042 

12 R 6 6 1 1 0.869 0.661 0.820 0.031 

13 R 6 9 0.937 0.684 0.825 0.045 

14 R 6 9 1 0.867 0.706 0.814 0.029 

15 R 6 9 1 0.931 0.747 0.835 0.041 

16 R 6 9 1 1 0.902 0.702 0.823 0.026 

17 R 9 3 0.918 0.665 0.816 0.046 

18 R 9 3 1 0.854 0.624 0.765 0.043 

19 R 9 3 1 0.920 0.714 0.823 0.045 

20 R 9 3 1 1 0.853 0.642 0.769 0.042 

21 R 9 6 0.931 0.697 0.825 0.043 

22 R 9 6 1 0.875 0.706 0.816 0.026 

23 R 9 6 1 0.931 0.747 0.835 0.041 

24 R 9 6 1 1 0.876 0.711 0.821 0.025 

25 S 3 6 0.931 0.697 0.824 0.044 

26 S 3 6 1 0.873 0.698 0.817 0.028 

27 S 3 6 1 0.931 0.739 0.831 0.040 

28 s 3 6 1 1 0.865 0.706 0.818 0.024 

29 s 6 3 0.933 0.688 0.815 0.045 

30 s 6 3 1 0.883 0.638 0.767 0.042 

31 s 6 3 1 0.911 0.735 0.824 0.043 

32 s 6 3 1 1 0.853 0.629 0.770 0.045 

33 s 9 9 0.937 0.684 0.825 0.045 

34 s 9 9 1 0.882 0.727 0.812 0.027 

35 s 9 9 1 0.931 0.747 0.834 0.040 

36 s 9 9 1 1 0.902 0.767 0.825 0.023 
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whether we choose to address it or not. As in other forms of applied analysis, this 

method leaves open questions of independence, distribution, and effective sample size. 

Because the need for analysis implies a lack of needed information, the best we can 

do is use what seems to work well in similar cases and check our results. At least, 

since the method relies on simple mean estimates and no more than two parameters, 

it keeps the level of complexity low. 

The remaining loose end is the robustness of the hybrid estimator. The claim 

is that it is not sensitive to the types of distributions common in C^I analysis. If 

this claim is true, than Eh[T(T')] is also a robust estimator of mean timeliness. This 

point is explored in Chapter 3. 
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CHAPTER 3. ROBUSTNESS OF THE HYBRID APPROXIMATION 

Introduction 

Chapter 3 examines the robustness of the hybrid approximation to E[T(r)] for 

a single needline. Robustness is be measured by the distribution of estimation bias 

as a function of the characteristics of the true distribution over a wide range of 

circumstances. A robust estimator is one for which the estimation bias is small and 

relatively insensitive to the shape of F(<). 

After defining key terms, the following discusses normalized distributions, and 

using that concept, briefly examines selected features of non-negative random vari­

ables and establishes some bounds on F(<). It also examines generalizes phase branch­

ing processes. It then extends these results to timeliness. Finally, it discusses the 

bias of the hybrid approximations in general and within the context of the proposed 

method. 

This analysis shows that the hybrid approximation is much more robust than 

conventional one- or two-parameter models of F(<). In addition, it determines limits 

on bias in the case of the 7'2(<;Mo) model, in general and using the CDB data. 
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Notation 

Approximations of mean timeliness 

Let Ex [T\(T\ T)| $x] denotes the mean timeliness, assuming T is distributed 

as a X random variable, with parameter set $x, using the Y model of timeliness 

with parameter set T. For example, 

EM [T2(R;(,(O)|«] = G «P (-;) + ^ ("V^) ? ("?) 

= ' - (r^) «"p (-j) 

is the mean of the T2 (^; t) timeliness model when T is distributed as an exponential 

random variable with mean 9. Here $x = W and T = 

If a rule or statement is meant to apply generally, the subscript or parameter 

sets will not be stated. For example, 0 < E[T(T)] < 1 is true for all distributions, 

timeliness models, and parameter sets. 

Bias 

The bias is the signed difference of the (assumed) true mean timeliness less 

the approximate mean timeliness^. Subscripts indicate both distributions and the 

timeliness model. In general, 

gx|z[TYmT)|$xU$z] 

= Ez ITy(T; T) |$Z] - Ex ITy(T; T) |$x] (3.2) 

^ This definition of bias is the negative of the usual definition. This change was 
made to make graphs easier to interpret. 
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is the bias of estimating EfTyC^)] using the Fx(<) distribution when the true distri­

bution is Fz. For example, 

^ M | r =  E r [ T 2 ( T i ( , ( o ) | « , v > ]  -  E M  [ r 2 ( r i ( , i o ) | » ]  

is the bias when using the exponential distribution to estimate E[T2(r)] when T is a 

gamma random variable. As before, subscripts and parameter sets will be omitted if 

a statement is meant to apply to all distributions, timeliness functions, or parameter 

sets. 

One may either compute the bias directly from (3.2), or integrate by parts to 

yield: 

^x|zl^Y(r)|*xU*z| = (3.3) 

This form is quite useful, since F(^) is better behaved than f(<) and the derivative of 

timeliness function is generally known. 

The Markovian approximation 

The Markovian approximation is an estimator of E[T(T)] which assumes F(<) is 

exponential with mean 9 = E[r]. Since it considers only E[r], its use is equivalent 

to comparing systems on the basis of their mean time. It is important in some 

derivations below. It also reflects the common practice of using the exponential 

distribution as a first approximation. In general. 

where 

^x|z U $z) = Pz ((; |*z ) - Fx (f; |*x ) • (3.4) 

(3.5) 
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Since ÊM[T(r)] is independent of all shape parameters, it is bounded by the smallest 

and largest possible values of E[T(T)(^]. Thus, the bias can be either positive or 

negative and of great magnitude, especially if y is large. 

Expected FMOP values 

The comparisons made in this chapter are based on the expected values of 

FMOPs which estimate model parameters. The expected value of px is simply 

Ft(^x). If T is exponentially distributed with mean 0, then because of the Markovian 

property, (^ = 9. Otherwise, let {<} be a sequence formed from only those > t£. For 

those —1£, with obvious renumbering. Furthermore, let r be the number 

o f  t  < t f ^ — 1 £ .  Then if C f i  is an estimate of ( based on h  tasks, then 

4 = (;) Zmin 
z=l 

r /  
= (?) 

Fixing r/n and taking the limit as n —> oo leads to: 

E[Ô%.(/i|FW) = E[T< r < <J -

=  [ i t ' i  ' +  ' A ( ' - % ) - 4 ( 1 - P e )  

P h - P e  

where S { t )  = 1 — F(<) is the survivor function of T ,  So, in the two-hop example, 

(3.6) 
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/  1  \  | - ( / " 2  -  ̂) 4 ]  -  e * P  [ - i f  2  -  1  
+ iiTÀ /• 

Note than if = 0 and tf^ -+ oo, (3.7) reduces to E[C] = 2/(/%2 — •^)j as expected. 

The Distribution of Non-Negative Random Variables 

Suppose an analyst wishes to characterize some non-negative random variable, 

T, on the basis of simulation output. In order to use simulation, the analyst would 

have to be reasonably certain that T has finite moments, so it is safe to assume that 

6 = EfT*] and = VarfT] exist. Beyond that, the analyst would be unsure of the 

nature of FT(<)-

This section comments on pertinent properties of non-negative random variables 

with finite moments. It begins by defining normalized distributions, which are anal­

ogous to standardized distributions of unrestricted random variables. It then illus­

trates common features of several distributions and presents several bounds on Fx(<)-

Finally, the discussion turns to the special properties of low- and high- variance dis­

tributions. Although this analysis differs from most by making very few assumptions 

about T, it is sufficient to bound estimation bias, when combined with the concept 

of focused measures of performance and the proposed method of estimating E[T(r)]. 

Normalized distributions 

The normalized distribution, sometimes called a scaled distribution, is similar to 

a standardized distribution, but differs in several important ways. First, the mean of 

a unrestricted random variable is a location parameter. However, because the mean 

of a non-negative random variable indicates the distance between the origin and the 
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expected value, it is a scale parameter. Second, there is no location parameter^. 

Third, all other parameters deal with shape. 

For example, a conventional representation of the gamma distribution function, 

Fr(0» :a: 

lexp(~4) 
''rC:"'/)) = /o 

= 

dt 

(3.8) 

where 

r(a) =  ^  e x p { — x ) d x ,  a > 0. (3.9) 

is the gamma function, and 

is the incomplete gamma function [44]. 

Let Ô be the mean of T and y = yVar(T)/^ the coefficient of variation. Since 

6 = and y = ^l/a, the normalized form is: 

Fp(<,'^,y7) = g ^0^2' ^2^^ ,^,^,^>0. (3.11) 

The following lemma shows that the normalized form always exists. 

Lemma 3.1 The distribution function of any non-negative random variable with fi­

nite moments can always be expressed in a normalized form. 

^Alternatively, one could argue the location parameter is fixed at zero. 
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Table 3.1: Conventional Descriptions of Four Non-negative Distribution Functions 

Distribution Subscript m Notes 

Exponential M ^exp[- (^)] 0 > 0, V? = 1 

Gamma r 
t«-lexp(-^) 

^"r(a) O!, /? > 0 

Weibull W 
a<«~^exp[-^^) 

a, ^ > 0 

Lognormal N Or > 0, ̂  unrestricted 

Proof: Since T is a non-negative random variable with finite moments, one can define 

$ = (0,1^1, ip2t • • •)> where 6 = E[r] and ipn = (^((^ g) 1) . This vector contains 

all information about the distribution function of T. Clearly, all parameters except 

9 are unitless, so the lemina is proven. • 

One can state any non-negative distribution in terms of 0 = (0, 

where 6 = EfT] and k — 1,2,... are unitless shape parameters. Although $ 

is an infinite-element vector, a n-parameter distribution function will be defined by 

the first n elements of $. The remaining elements of $ will be redundant and may 

be discarded. Table 3.1 lists the usual definitions of several common distribution 

models [44] and Table 3.2 shows the relationships between the conventional and 

normalized parameters. Figure 3.1 illustrates three of these distributions as functions 

of 9 and y. 
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0 0 

a. Fp(<;^,y) 

1.0 

0.5 

0.0 

Phi 

0 0 

b. Fw((;^,y) 

1.0 

0.5 

0.0 

Phi 

0 0 

Figure 3.1: Some Probability Distributions in Normalized Form 
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Table 3.2: Relations Among Distribution Parameter Sets 

Sub-
Script 

Conventional Parameters Normalized Parameters Sub-
Script a n 9 

r ? a/3 x/a 

W r(l+0 _ 11 2 . 9 
( i  +1)  W 

r (è+i)  
( i  +1)  

N In (l + 1.» exp(/J+f) \/exp{a) - 1 

Characteristics of general non-negative random variables 

A major advantage to normalization is that one can more easily compare one 

distribution to another. In particular, the fact that 0 is the only scale parameter 

leads to a simple, but useful result. 

Theorem 3.1 The distribution function of any non-negative random variable T with 

finite moments is a non-increasing function of the mean. 

Proof: By Lemma 3.1 one may express the distribution of T as F(/;$) where $ = 

{0,(pi,(p2f • •)' Because the choice of time units is arbitrary, F(<; $) = F(X;$N) 

where x — 1/9 and $n = (1,^1,^2)" •)• Because F(x) is a non-decreasing function 

of X, by the chain rule, F(<) must be a non-increasing function of 9. • 

This argument also shows that plots in Figure 3.1 are actually plots of F (</0; y»), 

and without loss of generality, one may assume 9 = 1.0. 
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Bounds on the distribution of T This next theorem establishes a lower 

bound on F(<). 

Theorem 3.2 (Markov Lower Bound on F(t)) If T is a non-negative random 

variable with finite mean 0 then, 

Proof: First, one need consider only t > 6 since F(<) > 0. Then, the result follows 

directly from Markov's inequality [45, p. 61]: 

with X  =  T  and a  =  t . O  

The next theorem presents upper and lower bounds based on Chebyshev's in­

equality. Unlike the Markov bounds, these hold for all random variables with finite 

moments. 

Theorem 3.3 (Chebyshev's Bounds on F(z)) I f  x  i s  a n y  r a n d o m  va r i a b l e  w i t h  

finite mean and finite variance , then: 

, 0 < t < d  

, t > e .  

A 0 , X < fi + <T 

, X > f i  +  ( T  

and 

A 1 , X > H - ( T  

, x < n - < T .  
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Proof: Chebyshev's inequality [45] states that for any fc > 0, 

Let k = X — fi. U X > fi then & > 0 and Chebyshev's inequality holds. Also, since 

X — n'ls positive, 

which leads to the lower bound. On the other hand, M k  =  f i  —  x  and X  <  f i ,  then 

which is the upper bound. • 

In the case of a non-negative random variable T with mean 6 and coefficient of 

variation (fi, 

A  I 0  , 0 < ( < g ( l + y )  

and 

Fcub(^;^,V?) = 
1 , t > e { i - ^ )  

(fe) , 0 < ( < 0(1 - Y?). 

Figure 3.2 illustrates these bounds for y) = 1 together with the lognormal and expo­

nential ^ distribution functions. 

Characteristics of low-variance non-negative random variables 

Figure 3.3 illustrates several distributions together with bounds on F(<) with 

(fi = 0.25. In this range these distributions are very similar and the Chebyshev 

^The Weibull and gamma distributions coincide with the exponential when (fi = I. 
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Figure 3.2: Bounds on v?) for 0 = 1 and ^ = 1 

bounds dominate. Although the Chebyshev bounds seem loose, they do confirm that 

F(() converges to 

F f l i t ' , 0 )  = 
0 

1 

< 6  

, t > e  
(3.12) 

as y —» 0. In addition, they imply that if y is small enough, F(^) increases with y* 

for < < 0 and decreases with t {or t > 0. 

Km distributions Suppose T is the sum of m independent, but not nec­

essarily identical, exponential random variables with means 0y,O2, . • • lOm- This 

distribution of T is often termed the generalized Erlang and will be denoted Km 

below. It differs from the m-phase Erlang distribution in that the m independent 

random variables need not have the same mean. 
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FWB ChebUB 

T 

Figure 3.3: Bounds on F(<) when = 0.25 

One may define Km distributions in several ways. The following defines FK^(0 

in terms of 0 = a vector of the individual phase mean times. Be­

cause the order of the index is arbitrary, assume > ^2 — ' " ' — Because 

T is the sum of m random variables, 9 = E[r] = Because the z-th ran­

dom variable is exponential with variance o'j and the variables are independent, 

Var(T) = 22^2 Also, for the same reasons, the Laplace- Stiltjes transform 

(LST) of the Krn distribution function is: 

(3.13) 

One can determine dFufjiit) by partial-fraction expansion and term-by-term inver­

sion of (3.13). 

If the 0 ^  are all equal, F*(s) = [7n/(m -f- O a ) ] ^  where 0 = mOi. Hence T is a 
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m-phase Erlang random variable, 

= (?)"" (^TT)!'"p (-T) 

and 

FKm(';®) = 1-exp 

On the other hand, if the are distinct, then 

(-¥)1'K?)' 

- f, (i^) 
and 

e) = (i) Ë 4(8) (y -p (~) 'tt (3.17) 

where^ = 6^/6 ,  and 

= 5,(Ar)' 
n^i 

Because the A( arise from the expansion of a fraction with numerator 1.0, their 

sum is 1.0 and — 0. Since the sum to one. 

FK„(i;e) = l-E4(0)«p|-zl' (319) 

Since k\ > • • • > kmi A\ is positive, the A^ alternate in sign, and l/lj | > • • * \ Am\-

The following shows that (3.19) is the limit of (3.15) as the 0^ —> 0/m. When 

m = 2, 

("4')+(A) ("4) 

'^This definition of A; differs from that in [46, 47, 48] by the factor l/fcj-. 
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^ (-^)-"-p (-4) 

01 — $2 

Let 5 = — 9(2 = 0/2 — 02* Then 

dFK2(<;^b^2) _ ®*p(~ë7fo) ~®*p("ë7^) 

dt 26 

Applying L'Hôpital's rule for ratios, 

(3.20) 

(3.21) 

rfFK,(«) (9+2<)2 («-2«)2 
Urn = Jim 
f->0 dt 6-*0 2 

= (I) (3-22) 

For larger values of m, one must use L'Hôpital's rule m — 1 times which produces 

the {mf6)^ — 1)! term. Since this agrees with (3.14), expectations in this 

limiting case will equal the limits of the expectations [49]. Thus, without loss of 

generality, one can assume that the Oj are distinct. 

Because ~ /Km(^) = 0. Because all > 0, and == 1, 

9 ^ 0 
y — S (3.23) 

i=l 

cannot be greater than one. Furthermore, (3.23) shows that (p reaches its maximum 

when Aj -• 1.0, -+ 0; i = 2,..., m and its minimum when = 1/m; i = 1,..., m. 

Thus, if T is a Km random variable, l̂/m < < 1 • Finally, the limit as r —> 00 

and Y? -+ 0 is the deterministic distribution T = 6. 
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Utility of Km distributions Because one need not have equal phase 

means, Km distributions are more general models of multi-phase processes than the 

Erlang. However, because (p is restricted to the range X/y/m < v? < 1, the analyst 

will have to use a very large m if the variance of the distribution is very low. In 

spite of this practical limitation, it is a useful theoretical distribution, since given a 

sufficiently large m, one can closely approximate any low-variance distribution with 

a Km distribution. 

Characteristics of high-variance non-negative random variables 

Bounds on F(t) Figure 3.4 shows the Markov bound, together with several 

distributions for (p = 2. Because FMLB(') is independent of y», it is a useful bound 

even if (p is very large. When v? > 1, the differences among the distributions seem 

to be much more pronounced for t < 9. The Br distribution family will be used to 

illustrate this point. 

Br distributions If T is a stochastic mix of r exponential random variables, 

one can view it as the result of a branching process and 

where $Br = (^1 » ^2» • • • ' ̂ r,Pl >P2» * • • iPf)' Here 9j is the mean of the exponential 

random variable associated with the j-th branch and pj is the probability of selecting 

that branch [26, p. 36]. Because one may combine two branches if their means are 

equal, one may assume the 0j are distinct. Of course, > 0 and dj > 0. Also, 
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F(t) 
1.0 H 

0 1 2 3 4 5 

Time 

Figure 3.4: Bounds and Several Examples of High-Variance Distributions 

= 1- Additionally, 

is a convex combination of the r branch exponential distribution functions. Figure 3.5 

shows an example of FBr( ) together with the exponential distributions for each of 

i t s  b r a n c h e s .  I n  t h i s  c a s e ,  0 ^  —  0 . 2 5 ,  O g  =  3 ,  p  =  8 / 1 1 ,  a n d  < 7  =  3 / 1 1 .  O v e r a l l ,  0 = 1  

and If == 2. For comparison, this figure also shows Fp(<; 1,2). 

Properties of Br Distributions Conditioning on the branch taken shows 

(3.25) 

O j j O .  Then 0  = and P j ^ j  = 

= ̂ 1 - EjZ} Pj'^/j /Pr, one can define FgrO) 
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F(t) 
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02 

0.0 

P a t h  1 B  2  
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Path 2 

12 3 4 

T i m e  

Figure 3.5; Components of a B2 Distribution 

using the 2r — 1 element parameter set 

^Bt u*!, u>2) • • • ) — 1 ' Pi ' P2' " • ' 'Pr—1 ) ' (3.26) 

Because elements of this set except 6 are unitless, this is a normalized form. Among 

other things, this means that without loss of generality, one can assume 9 = \. In 

addition, since VarfT] = E[T^] — 

E f r ^ l  

= E Pi (2"'|) - (3.27) 

Thus, one can express in terms of 0, (p, and some other unitless parameters, 

such as Pi,P2'• • •'Pr—1 "'I >"^2'* • • '2- The following theorem proves that 

Br distributions are necessarily high-variance distributions. 
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Theorem 3.4 Given any positive , ̂ 25 • • • > any probabilities Pi,P2i • • • iPr 

such that pj > 0; j = 1,2,.. .,r and T!j—i Pj = !• If 

^T(<;^n) = 1 - ]C Pi®*P 
i=i 

is the distribution of T, then the coefficient of variation is greater than one. 

Proof: Without loss of generality, let 0 = 1, so wj = Oj. Let u j  = w j  ~ I .  Then 

since Pj^j = 1» 

r 
1 = S Pj (l + "j) 

i=i 

= E Pj + H PjUj (3.28) 
j=l j=l 

which shows Sj—j Pj^j = 0. Thus 

E p j ^ j  =  E P j O + ^ j ) '  
j=i i=i 

j=i 

and substituting (3.29) into (3.27) shows 

= 1 + E P j ^ j  (3 29) 

= l+2j2Pj"j (3.30) 
i=i 

which cannot be less than one. • 

A normalized J?2 distribution Let ^ = 1 and r = 2. Then 

Fb2 ^ (3.31) 
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with W 2  =  ( 1  —  w;p)/(l - p). From (3.27), 

= 2 p w ^  +  ( l - p )  - 1. (3.32) 

Thus 

Now, since both weights must be positive, 1 — tup > 0. This implies that p < 1/w. 

Substituting l/tu for p into (3.33) yields 

2w^ — ^3 w -f" 1 >0. (3.34) 

This convex quadratic has roots at 1 and + l) /2. Since + 1^/2 = 1 + 

— l) /2, the second root is greater than the first for v > 1. Thus, one may have 

either 0<w<lorw> + l) /2. Repeating the same argument with W2 and 

1 — p in place of w and p shows that either 0 < u;2 < 1 or «^2 > + l) /2. If 

w> < 1 then 

W2 = (3.35) 

Conversely, if u; > 1 then twg <( 1. Thus, one branch mean will be in the interval (0,1) 
2 

and the other in (^-^^,+oo). Because the numbering of the branches is arbitrary, 

assume w 6 (0,1). Thus, for any y > 1 one can construct a B2 distribution by: 

1. Selecting w € (0,1), 

2. Computing p from (3.33), 

3. Computing wg from (3.35), and 

4. Calculating probabilities from (3.31). 
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F 
I.O1 

T 

w = 0.00 w = 0.25 w = 0.50 
w = 0.75 w = 0.95 Exponential 

Figure 3.6; Examples of Bg Distributions with y; = 2 

Diversity of B2 distributions For any <^ > 1, there are an infinite number 

of B2 distributions. Figure 3.6 illustrates the range of possible distributions when 

6 — \ and y? == 2. For comparison, this figure also shows the exponential (with 

Y? =: 1). It is clear that w has a great effect on Fjj^ {t;0,ip,w) and that as tw 1, 

FB2 (t;9,<p,w) comes close to Fm(^;^). 

Summary 

One may express the distribution of any non-negative random variable with 

finite moments iri normalized form. In addition, by choice of scale, one may set 

0 = I without changing any other normalized parameter value and the normalized 

distribution is a decreasing function of 0. One may bound F(<) using Markov and 
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Chebyshev bounds. Chebyshev bounds are most effective when <p < 1 and show that 

as 0, the deterministic distribution. The Markov bound is 

most useful when (p » I. When <p is small, there is little difference in the shape of 

distribution functions with the same 9 and <p. However, if (p is large, the variation 

is great. In particular, for any finite 97 > 1, one may construct a distribution that is 

arbitrarily close to the exponential, but with heavier tails. 

The Nature of Mean Timeliness 

Introduction 

This section explores the nature of mean timeliness and establishes some bound­

aries on its values. The analyst can use this information to bound the effectiveness of 

a system, or given ranges of acceptable performance, bound the range of significant 

performance values. 

General features of mean timeliness 

Figure 3.7 illustrates Ep [T2 (T; 1,<Q)|^, y]. The obvious question is "What fea­

tures of Figure 3.7 illustrate general features of E[T(T)] and what features are unique 

to Ep [T (T;*, <0)1^5^]^" This section formally establishes features of E[T(r)] for 

general timeliness functions and distributions as well as some specific results for the 

T2it]t,tQ) model. Table 3.3 summarizes these results. 

Mean timeliness is simply the expectation of T { t ) :  

Jroo F (3.36) 

Since 0 < T(<) < 1 and d F { t )  = 1, the integral in (3.36) will converge. In addi-
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Table 3.3: Invariant Features of Mean Timeliness 

V( > 0,ra(<) > Tj(0 E(ra(r)i>E[rj(r)] 

Vi>0 ,F i ( ( )>F2  Ei[r(r))>E2(T(r)] 

âElT(T)]/a0 < 0 

dE[T2(T)]/dl > 0 

deiT2(T)V9to > 0 

tien, both factors under the integral are positive and have independent parameters. 

This leads to a simple, but useful theorem. 

Theorem 3.5 For any non-negative random variable T, Tait) > 7^(f) for all T 

i m p l i e s  t h a t  E [Ta ( T ) ]  >  

Proof: 

E|T.(r;T)|$| = Ta((;T)iFx((;4') 

- X°°Î6('lT)rfFx(i;*) 

= E [TJ(RI T) !•]. 

• 

For example, because T2{t) is an increasing function of both i and <Q, E[T2(2')] 

must be, too. In a similar vein, one can show the effect of a dominant distribution. 

Theorem 3.6 For any non-negative random variable T, Fi{t) > ^2(0 o/f T  

i m p l i e s  t h a t  E i [ T i T ) ]  >  E ^ [ T ( r ) ] .  
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Proof: Integrating (3.36) by parts yields: 

fOO 
Ex[TY(T;T)|$] = -jT Fx(<;$)jTY(<;T). 

Bearing in mind that (/TY(*) is negative, the argument of Theorem 3.5 will also prove 

this theorem. • 

The following theorem builds upon Theorem 3.6 and capitalizes on the special 

nature of normalized distributions. 

Theorem 3.7 For any non-negative random variable T with finite moments and 

any non-increasing timeliness function, the mean timeliness is a decreasing 

function of 0 = E[T]. 

Proof: Represent ?%(<; in normalized form with 0 = (0,V1»V2''^3''**)- Since 

0 is the only scale parameter, F(t;^) = F(t/0;^ff) where = (1,V?j,9J2>'^3>• • •)• 

From Theorem 3.1 F(<) is a decreasing function of 0, so by Theorem 3.6, E[T(T)] 

must also be a decreasing function of 0. • 

These theorems confirm much of the behavior shown in Figure 3.7. For one, 

E[T(r)] is a decreasing function of Û. Secondly, the normalized form allows one to 

select a scale in which any one of 6, t, or (g are equal to one. (In the following 

examples, t will be 1.0, unless otherwise stated). 

General bounds on mean timeliness 

This section presents several bounds on mean timeliness. The analyst can use 

these to bound system effectiveness as well as working ranges of 9 and if. 

The Markov lower bound Although the Markov lower bound is not very 

t i g h t ,  i t  i s  u s e f u l  i n  t h a t  o n e  n e e d  n o t  e s t i m a t e  t p .  
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Figure 3.8; The Function = exp(—x) — xEi{x) 

Corollary 3.1 (Markov Lower Bound on E[T(T')]) For any non-negative ran­

do m  v a r i a b l e  T  w i t h  f i n i t e  m e a n  0  a n d  a n y  n o n - i n c r e a s i n g  t i m e l i n e s s  m o d e l  T { t ) ,  

> EMLB [T(()l 9| 

d T { t )  
0 t 

Proof: From Theorems 3.2 and 3.6, 

E(r(()|t] > EMLB[7"(i)l«) 

Separating the terms within the parentheses and evaluating the first leads to the 

result. • 
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Theorem 3.1 establishes a characteristic lower bound for any given timeliness 

function. For example, since jTg (<; l,<o) = 0 for < < (g, 

E&iLB [T2(T;l,/o)|0] = ^2 (^; l,<o) " (j) ~ 

1-0exp(/o)^l (<0) ,^<<0 

(3.37) 

exp (<o) [exp {-0) - OEi (tf)] , 0 > 

where 

E u { x )  = ex^{—u)u~^du (3.38) 
Jx 

is the exponential integral. Pagurova discusses this family of functions and presents 

extensive tables of their values in [50]. Figure 3.8 shows a plot of (7^(0) = exp(~û) — 

ÛEI(Û). Also, Figure 3.9 shows EMLB[*]-

Let be the smallest value of 0 for which the Markov lower bound is less than 

or equal to a given value v. If Oy < <Q, (3.37) implies, 

6y - f(l - U)CMLB (3.39) 

where 

«•'" • ̂  

is a unitless quantity, depending only on the ratio of <Q to t. Table 3.4 lists CMLB 

as a function of V for the CDB data as well as EMLB*('P)» the smallest value of 

EMLB [^2(^)1^] which (3.39) holds. Since it is unlikely that Vmax will be less 

than 0.75, (3.39) is useful for all V codes except "B". Because EMLB [^2(^' 1)0)| 0] — 
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Figure 3.9: EMLB[^2(^)] 

G \ { 9 ) ,  one could find O y  by iteration. However, since EMLB["] ^  0.85 for O / ï  —  0.04, 

ov 9 = 4.34 msec, it is unlikely that a lower bound would be practical for V = B. 

Analysts can use dy to roughly analyze data. For example, if p = 6 and the 

analysts would not be able to differentiate among systems with E[T9(T)] > 0.95, 

then they would accept any system for which 0 < 4.096(1 - 0.95)0.5682 minutes, 

about 7 seconds. 

Chebyshev Upper Bound If (p < 1, one may also bound E[T(T)j from 

above. 

Corollary 3.2 (Chebyshev Upper Bound on E[T(T)]) // T is a non-negative 

rand o m  v a r i a b l e  w i t h  f i n i t e  m e a n  0  a n d  c o e f f i c i e n t  o f  v a r i a t i o n  k  < ^ p ,  a n d  T { t )  i s  a  
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Table 3.4: The Ratio of Critical Mean Time to Value for the Markov Lower Bound 
toE[T2(r;i,(o)|«] 

V CMLB{^) EMLB*(P) V C^mlbCP) EMLB*(P) 
0 1.6692 0.4049 6 0.5682 0.7558 
1 2.8635 0.2695 7 2.1917 0.3320 
2 7.3715 0.1201 8 2.3619 0.3137 
3 7.8579 0.4542 9 2.4734 0.3023 
4 2.8635 0.2695 A 1.0118 0.5612 
5 0.8655 0.6140 B 0.0000 — 

non-increasing timetiness function, then 

$1 < £buB[T(()|«,4Pl 

Proof: First, by Theorem 3.3 and the converse of Theorem 3.6, 

E(RWK) < 

which shows the inequality is true for K = <FI. Next, 

a E c s i m i e M  ^  a r m - .,,2^ /('-W jm +  , 2 ^ _  - ,  
dip dip Jo (d -ty 

which is positive, consisting of three positive terms. • 

In the case of the T2(<) model, when <0 < ^(1 — ), 

ECUB [^2 

= exp[-^(l - y)] + 

^2(^2 exp [- - <o)] 
exp (g- <o) _ exp(^y) _ [9-tQ exp(g)^^' 

6 — tQ $(p J$ip X -i JBu 
. (3.41) 
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Figure 3.10: The Chebyshev Upper Bound on E[T2(T)] when <p = 0.5 

Otherwise, ECUB["] = Thus, to use this bound, (p must be less than one and 

< 0(1 — y). One must also evaluate fJlexp(x)/xdx numerically. This is not a 

serious problem unless y is very small. Figure 3.10 illustrates EcuB [7*2(7')] with 

y = 0.5 evaluated using Simpson's rule with four interpolation points. The scale of 

9 is ten times greater than that in the earlier figures. 

Mean timeliness when variance is low 

When (^ < 1, one may bound E[T(T')] from above and below. One may also 

bound the working range of 9, given E,jjj,j and Emax- Figure 3.11 shows upper 

bounds on 0 and lower bounds on (p for integer values of assuming E^,^ = 0.50. 

If (0,tp) lies above a line, mean timeliness will be below 0.5 when (Q is the stated 

value. This figure is based on EcuB [7^2(^)1* 
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Figure 3.11: Chebyshev Upper Bounds on 9 and Lower Bounds on tp for 
E[T2(T)] with = 0.50 

Mean timeliness for the Km distribution If the 6^ are equal, FKm(0 

is a m-phase Erlang distribution, so 

EK^irmiei = (3,42) 

However, if the 0^ are distinct, 

EK™ir(T)|0) = exp \~j\dt 

m 
= ][: |7-(:r)|*,] 

i = l  
(3.43) 

Because the 6^ are in order of decreasing size and Em [T] is a decreasing function of 

^Ia[T{T)\6{] < {T)\62] < ••• < {T)\Oni]- However, the Ai alternate 

in sign and decrease in absolute value with i. Thus, EK„jT(r)] may either increase 

or decrease with increasing 0. 



www.manaraa.com

108 

The results are elegantly simple for the T2(<) model when = 0. Let t = 

5^1=1 where ..., are the individual phase times. Then, 

T2(<i+<2 + ••• = exp 

m / *.\ 

• a-'H) (3.44) 

Since the T: are independent. 

Ek™ [2-2(r;'.0)) = nEKm«p(-jj 

• âw (3.45) 

This highlights the fact that in this particular case, the timeliness at the completion 

of Stage n depends only on T (EjtT/ H) , the timeliness at the beginning of the task, 

and tfi' This product will be greatest when ki = 1, = 0; i = 2,..., m and smallest 

when all = 1/m. Thus, 

- EK„[T2(ri(,o)|e] < (3.46) 

Assuming the are distinct, (3.1) on p. 78 and (3.43) lead to: 

EKM[î'2(r;I.<o)|e] = I - .E AW (-^) • (SIT) 
^=1 \ t / \ z / 

Since the alternate in sign and can be very large, the analyst should not be 

surprised if and EM[T(r)] differ greatly. 
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Figure 3.12: Eb., [72(7; 1,0)| 0,2, u;] 

Mean timeliness when variance is high 

The situation differs for > I. For one, the Chebyshev upper bound is identi­

cally one. If y >> 1, only the Markov bound is significant. Note also that 

EBR[T(R)|4.1 = SPJEMITOTI»^] (3.48) 

is the weighted average of the mean tinfieliness in the r branches. Because the loss of 

value is non-linear, EB|.[7(r)] can vary greatly for any given 0 and <p> \. Figure 3.12 

illustrates this point by showing EB2 [72(7; 1, 0,2, w] over the full range of w. 

Summary 

Mean timeliness depends upon the timeliness model and the distribution of 7. 

If F(<) is expressed in normalized form, one can show dominance of timeliness models 

and distributions. In particular, E[7(7)] decreases with increasing 0. Although the 
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Markov lower bound is weak, it does not depend upon ip. The Chebyshev bounds 

are tighter when y is small, but become loose with larger tp. 

Given 0 and y << 1, one need not know the exact distribution of T to estimate 

E[T(T)]. However, when > 1, E[7'(r)] depends greatly on higher moments of T. 

This implies that no single two-parameter model of F(<) will suffice if tp > 1. 

Robustness of the Hybrid Estimator 

Introduction 

This section explores the robustness of the hybrid estimator, Fh(0» it is used 

in the proposed method. Robust estimators are estimators for which the range of 

the bias in an expected range of circumstances is relatively small. Since analysts 

may not be able to control all circumstances, and often have to model situations in 

which circumstances vary widely, they would be interested in robust estimators. As 

mentioned earlier, the common practice of comparing systems on the basis of mean 

time is not robust. Two-parameter models of Ft(0 perform well when the coefficient 

of variation is small. However, they may yield misleading results when tp is large. 

Unless analysts can rule out <p » 1, two-parameter estimators are not robust either. 

This section first explores the robustness of the hybrid estimator. Then it exam­

ines the test for low variance and the likelihood o( <p « 1. Finally, it examines the 

bias of the proposed method. Briefly, this discussion shows that the proposed method 

avoids several serious shortcomings of the conventional methods without introducing 

serious problems of its own. 
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Figure 3.15: Several Approximations to Fr(T) 

Hybrid estimator bias 

Earlier comparison of Figures 2.7 and 1.3 implied the hybrid estimator is more 

robust than other distributions. Figures 3.13 and 3.14 imply the hybrid estimate is 

more precise than the gamma when y > 1, but not when y) is very small. Figure 3.15 

shows several Fp(r) distributions with equal T(<), 0, and tp. Figure 3.16 shows two 

of these Fp(r)s together with their hybrid approximations. It implies the hybrid 

estimator succeeds because it characterizes that part of Ft(^) that has the greatest 

impact on E[T(7')]. The discussion below is in two parts. The first discusses the bias 

on [0,^^) and the second the bias on oo). 

Bias on [o, Consider first bias on the interval [0, Because and 

1 — exp (—^^/^) can differ greatly, the Markov bias can be very large. The same 

0 0.2 0.4 0.8 0.6 1 
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Figure 3.16: The Adaptable Hybrid Approximation of FrCr) 

condition applies to the gamma and other models based on the first two moments of 

T. When < 1, the difference between the true and model F{t£) may be small, but 

when V > 1, once again, the difference can be large. 

On the other hand, Fh(0's the straight line connecting (0,0) to The 

greatest possible value of E[T(r)|T < t^] is 1.0 and the least is T^. So, 

r c { T i - m [ T ( T ) \ l i \ }  <  B | , | ^ [ T ( T ) | v , P < , > t T , r < l £ ]  

<  n { \ - m [ T ( T ) \ t i \ }  (3.49) 

where m ^T(T) is the mean value of T { i )  on [0, The difference between the 

upper and lower limits is — 9^^ So, if 9^ = 0.9, the maximum uncertainty is 

about ±0.05. 

0.2 0.6 0 0.4 0.8 1 

T'C'O 
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Bias on oo) Consider next the bias on the upper interval [<£, oo). At 

the low end, FH(<^) = but the difference between and either FM(*£) or 

Fp(<^) can be very large. If dT{t)/dt is a decreasing function of T on [<£, c»), the 

large difference at tfi can also cause a large bias for T > t£. Let f = T — t£ represent 

times longer than t£. The hybrid estimator assumes T is an exponential random 

variable with mean C- k addition, C ignores the shape of the true distribution beyond 

Thus, it ignores the great heaviness in the tails of high-variance distributions, 

responding instead to the moderate values that affect E[T(r)] the most. 

The good performance of the hybrid estimator is due partially to its lack of bias 

at t£ and partially to its emphasis on the critical region The strategy works 

well, as long as the exponential model is a good fit on (<£, tj^). This is the case when 

(fi is large. For example, suppose T follows a Br distribution. 

= I:PJEM[T(R + I^)|(J] - EM[T(R + (^)|F] 

= E Pj {EM [r (t + ti) |Cj ] - EM [T (T + tf) |c]} (3.50) 
i=i 

is the weighted average of exponential expectations. Those branches with 0  <  ( j  <  

th — t£ will have the greatest influence on both ( and E[T(r)]. This also means 

the significant (j will be close to ( in value, and regardless of the size of pj, will 

contribute little to bias. The term error will be large when Cj >> C> but in these 

cases, Pj will be small, so again there is little contribution to error. 

However, when (p is small, the situation changes. For example, assume T follows 
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a Km distribution. As above, 

^H|Km K" ̂  ] 

m 
Z ($KM) {EM [T (R + |CJ ] - EM [r (R + |c]}. (3.51) 

1=1 

Once again, the significant will be close to each other in value, but the alternate 

in sign and can be very large. This can lead to a large estimation error. 

The worst case occurs when f has very low variance. In this case, FT(<) ap­

proaches zero for i < C and one for i > (. Thus, the Integral on [<£, ( 4- tg) has 

its smallest value and that on [C + t£, cx>) its highest. If the majority of the value 

is in the smaller interval, the bias will become very negative. If the majority of 

value is in the larger interval the bias will become very positive. U T = (, then 

E [T(!r + <^)| = T{C + t£)- The hybrid estimate would be Em [T(T + t^) |(j. So, as 

shown in Figure 3.14, when y » 0, the hybrid bias is essentially that of the Markovian 

estimate. 

The total bias in the extreme case T = 0 i s  analyzed below. First, E[T{T) \9]  =  

T{9). The hybrid parameters are: 

Pi = 
1 

0 

and 

0 

=  ^ - 4  

, 0 > t g  

, 0 < t e  

' ̂ ̂  ̂h' 

(3.52) 

(3.53) 

The implied extreme limits for the T2{t) model are summarized in Table 3.5. 
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Table 3.5: Asymptotic Limits on with ^ = 0.9 and 3^ = 0.1 

Value of 9  

Limits on ^„|K^ [T2M] 

Value of 9  Lower Upper Range 

0 < 0 < <0 1.0-Ci 0 

t { s  <9  <t i  0.9 - Ci 1.0 - Ci 0.1 

k<o<th  -0.1833 0.1 0.283 

0 0.1 0.1 

t£<0< 00.5  -0.097 0.1 0.192 

A decision rule The hybrid estimate is not robust when tf^<9 and y 

is small. If the output is uncorrected, one can simply estimate y. However, under the 

best conditions, (p would be noisy, and the output is almost always autocorrelated. 

One indication of trouble with the hybrid estimate is that Ft{T) rises quickly. 

In the extreme deterministic case, 9 € fl implies = 1. Figure 3.17 shows 

— P£ as a function of 0  and (p ,  assuming a gamma distribution. Here t ^ /0  = 1 and 

tf^/9 = 2. The pattern is similar for other distributions and other choices of t£ and 

One can think of other situations as independent re-scaling within each of [0, 

[t£, tf^), and [tf^, oo). There is typically a sharp rise in value for points in the triangular 

region approximately bounded by {9,(p) = ((^,0), (<^,0), and ^^^^^^,0.5^. 

In practice, one usually need not test for this situation. First of all, > 0.5 is 

evidence that pf^—p£< 0.5. Secondly, Figure 3.18 shows as a function of p in the 

(M/D/1) model. The variance of the service distribution is zero and it is unlikely the 

arrival distribution in C^I systems will be much less variable than the exponential. 

Note that unless p < 0.5, f > 0.5, implying that low-variance situations are rare in 
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Figure 3.17: The Difference —p£ when T is Distributed as a Gamma 
Random Variable 

heavily-loaded systems. 

The bias of the proposed method 

The method depends upon four key points. First, preliminary screening elimi­

nates regions in which E[T(T')] will be too small. In these regions, even if the error 

is large, it will be unimportant. Second, focused means and probability estimates 

are usable over a very wide set of circumstances. Third, the decision rule determines 

when to use the hybrid model, and fourth, situations in which F» are inappropriate 

are rare. 

Figure 3.19 illustrates typical regions in the low-variance segment of the 0  x  

plane. The pattern extends smoothly into the high-variance region, with the pre-

screening upper limit becoming larger with y. Figure 3.20 illustrates the net effect 
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Figure 3.18: Characteristics of the (M/D/1) Queue as a Function of 
for 0 = 1 

of the entire method on bias in a number of situations. All plots are of Eji [T2(T)] 

with ^ = 0.9 and Tl^ = 0.1. They differ in the underlying distribution. To provide 

visual continuity, 5h(*] was set to zero in those instances in which En[T(T')] would 

not be computed. 

This exploration brings out three important points about situations in which 

timeliness is a non-linear function of time. First of all, one needs to consider the 

shape of the distribution of T more carefully than is common practice. Secondly, 

because of the much greater difficulty of estimating shape elements of a distribution, 

one should focus on the regions of greatest impact on the effectiveness measure. 

Conclusion 
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Finally, since the relation of effectiveness to time may not be exact, one needs an 

adaptive method that allows sensitivity analysis. 

Although using unfocused means is a low-cost simple method, is not good prac­

tice in these cases. First, the analyst is likely to miss-classify systems, unless the 

distribution of T does not differ among candidate models. Secondly, if the distri­

bution is not approximately exponential, EM[T(T')], or any other estimate based 

on E[R], will not be a good predictor of system performance. Finally, the use of 

such models creates a body of performance measures that are not comparable across 

different studies. 

The use of a conventional distribution, such as the gamma, would be an improve­

ment, if one could estimate y. However, simulation output is often autocorrelated. 

Additionally, when (^ > 1, higher moments of F(() can greatly affect E[T(T)]. These 
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weaknesses are shared by all models whose parameters are based on the first two 

moments  of  T.  

Because it focuses on ÎI = the interval of interest, the hybrid estimate 

performs much better than either of the two more common approaches. Its extreme 

limits on bias are reasonably small. However, its bias in practice is much smaller, 

when used in the context of the proposed method to analyze moderately- to heavily-

loaded C^I systems. 
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CHAPTER 4. CONCLUSION 

Summary 

This paper stresses four major themes. First, the effect of delay upon value is 

a non-increasing non-linear function of time. This implies that mean time is not a 

good predictor of time effectiveness. The expectation of timeliness is presented as a 

superior measure that is simply related to time effectiveness. Second, the develop­

ment of C^I systems requires the concerted effort of specialists from numerous fields. 

This implies a need for inter-disciplinary communication. The Focused Measure of 

Performance is presented to improve such communication. Third, analysts need to 

consider the effects of uncertainty in the description of offered loads, environments, 

and effectiveness models in judging the quality of their answers. The common prac­

tice of specifying values as exact points fools us into thinking we know more about 

the system than we do. The pseudo-confidence interval, together with an extension of 

Taguchi's approach that allows for uncertainty in the definition of quality is presented 

as a quantitative method to gauge the precision of estimates. Forth, one may use the 

focused measure of performance and pseudo-confidence intervals to find productive 

areas to work in across the C^C^I barrier. Finally, C^I systems are queueing systems 

by nature, and as such have moderate to high autocorrelation. This autocorrelation 

complicates the problem of determining the distribution of T. Several bounds and 
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estimators of mean timeliness are presented that are both practical in the presence 

of autocorrelation and a vehicle to good estimates of mean timeliness. 

This report proposes a philosophy of analysis, a measure of performance, a mea­

sure of effectiveness, and a method of analysis that simultaneously addresses these 

themes. Chapter 1 points out the fundamental problems estimating C^I using con­

ventional measures of performance, such as the mean and standard deviation. It 

points out the complications due to autocorrelation and unknown certainty of mod­

eling data. The proposed method, presented in Chapter 2, attempts to alleviate 

these difficulties by using a context-sensitive performance measure, rather than an 

unconditional one, in hopes of obtaining better approximations of effectiveness. The 

method also advocates stating the uncertainty in modeling and evaluation data and 

carrying that uncertainty forward through a modification of Taguchi's experiment 

designs and pseudo-confidence intervals. Finally, Chapter 3 discusses the ability of 

the proposed method to work under a variety of circumstances. These chapters show 

the need for and a means of improving communications across the C^-C^I interface. 

They also show the proposed method is 1) practical, 2) robust, 3) efficient, and 4) an 

improvement over many conventional methods. 

Conclusions 

Analysts need to consider four important facts when evaluating time perfor­

mance. First, because timeliness is non-linear, they cannot base timeliness measures 

upon E[r]. Second, except in very simple cases, they cannot use existing analytical 

network models to determine F(<). Third, because of autocorrelation, they cannot 

estimate F((), /(<), or h{t) directly from simulation output. Finally, because ana­
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lysts do not know exactly the input, working conditions, and MOP/MOE conversion 

functions, they must not only use methods that are robust over a wide range of con­

ditions, but also consider the uncertainty in this data when evaluating results. The 

proposed method is one way to addresses these concerns. 

Recommendations for Further Study 

The approach used in this paper is simple, but effective. Although this demon­

stration shows that the concept is workable, better methods could be developed. Now 

that there is a way, the analytical community can seek a better one. Further work, 

however, will partially depend upon increased knowledge. 

For this work to be of lasting value, the community needs to address two 

problems. First, although the CDB represents a great deal of effort and is very 

valuable, it could be improved. The uncertainty in COF codes and some minor 

issues about perishability codes need to be resolved. In addition, the community 

should agree on some minimal characterization of timeliness. This can be as simple 

as specifying two value points, e.g. and (tfiyPh)-, or as ambitious as a generic 

T(t)  model. 

Most of C^I analysis deals only with point estimates, or at most, intervals based 

on the variation within simulation runs. Because these have an unknown degree of 

precision, the analyst cannot know the quality of such estimates. Unless the analyst 

takes into account external uncertainties in problem formulation and performance 

evaluation, such estimates only reflect their ability to predict the performance of 

the C^I model, rather than the C^I system it represents. Therefore, the analyst 

must also conduct a sensitivity analysis of the results to these uncertainties. This in 
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turn implies that the community needs to more accurately describe the existing 

variation in its estimates of offered load, environmental conditions, and effectiveness 

models. 

Finally, although the focus of this paper is the effect of delay on telecommuni­

cations in C^I systems, most of the discussion is applicable to the effects of delay or 

storage in any time-critical situations. Thus, another area of research is to determine 

the similarities and differences in similar situations. 
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APPENDIX A. DETERMINING CDB TIMELINESS PARAMETERS 

The following discusses adjustments made to CDB data and determines parmeter 

values from the CDB codes. It assumes that = ^ = 0.9 and T{t^) = ^ = 0.1. 

CDB Code Adjustments 

The CDB perishability boundaries are not consistently defined. In most cases, 

for V range coincides with for T' + 1, but in some it does not. The analyst 

will be using simulation to estimate probabilities, so if one time is both a t£ and a 

an estimate of for code V will be the same as that of pf^ for code T* + 1. the 

entire range of V codes could be represented with fourteen specific times instead of 

eighteen. The problem is especially acute for 5 < "P < B. To solve this problem, 

let — 1) for 'P > 0. Since this rule changes only the larger of the two 

limits, it will lead to the least change in values. 

Since T is a continuous random variable, there is no difference between Pr{r < t} 

and Pr{T < <}. However, digital computers deal with a subset of the rational 

numbers, so one must adapt a convention for coincidence. Let these pairs represent 

a  ser ies  o f  ha l f -open  in te rva l s  so  i f  T  =  t£ ( 'P)  i t  wi l l  be  counted  in  the  V-th  

interval, but if T = it will be counted in the (7^+ l)-th. These modified ranges 

mean that if the analyst wishes to examine R contiguous ranges, they will only need 
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to estimate + 1 probabilities. 

Parameter Determination 

Exponential timeliness model 

Let Ti(d; t )  =  exp{—t / t ) .  In general, one cannot find a t  that will cause T i(2; t )  

to pass through both constraining points. However, the analyst can use a regression 

model, so 

i= . y (A.1) 

One can convert most CDB perishability codes in this manner. However, when 7^ = 0, 

= +00, so one must either rely on alone or specify a finite The largest 

ratio of to t£ among the other codes in the hour range is 2.0. Let = 24 hours 

whe n  V  — 

Two-parameter exponential model 

Of course, < /, implies îq < Substituting both constraining points into 

the lower definition of (1.7), taking logarithms and solving the two simultaneous 

equations yields: 
t u - t p  

and 

t = --r—Û ^ (A.2) 

This method allows one to convert most of the CDB perishability codes, handling 

V = 0 as above. However, when V — t£ = 0, which would imply a negative 
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tQ. Instead of this, let tQ^ = 0. This leads to t^ = — T^—ln Tg ' since 

T{t(i) = T^, t£^ = —tfflnlg. This preserves the meanings of t£ and as 1 ^{Tg) 

and respectively, and avoids the difficulties that arise if tQ < 0. 

Weibull model 

The Weibull survivor function is commonly used to represent residual value. Let 

Ty/{ t ' ,a , ^ )  =  exp . (A.4) 

Substituting the constraining points into (A.4), taking logarithms twice and solving 

the simultaneous equations leads to; 

In 'A - In ' f  '  '  

exp 

and 
'In U In (- In - In In (- In 

In (- In - In (- In 

One can convert the CDB perishability codes, handling "P = 0 and V =  B  as  above. 

A Comparison of the Models 

Given enough ((%, v^) pairs, one can check the fit of each model to the data and 

select the most representative. However, because the CDB contains only two points, 

one must decide among candidate models on some other basis. 

Figure A.l illustrates plots of the three functions for V =  5 .  The one-parameter 

exponential shows a very rapid initial decline in value and has a value of only about 

0.7, rather than 0.9, at t£. The two-parameter exponential model passes through 
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Figure A.l: A Comparison of Three Timeliness Models for 'P = 5 

and {tf^,T|^) and predicts a rapid loss in value near t£. The Weibull model 

also passes through both constraining points, but predicts a more gradual loss in 

value over 

The Weibull shape parameter (a), which ranges from about one to eleven over 

the  V codes ,  a l lows  the  ana lys t  t o  choose  the  reg ion  o f  g rea tes t  change  in  T{t ) .  

However, 

= -a (i) exp - , (A.7) 

Since all CDB vlaues of a exceed 1.0, the value will drop slowly for small values of 

t and the Weibull model will predict a more gradual loss in value near than the 

two-parameter exponential. Thus, the two-parameter exponential model seems to 

model probable value loss better than the Wiebull, 
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Table A.l : Reference Times for T2(<; /q) 

V Units 
H 

(*0.9) 

ih 

(<0.1) <0 t tf <0.99 <0.01 
0 Hrs. 8 24 7.233 7.282 16. 7.306 40.767 
1 Hrs. 4 8 3.808 1.820 4. 3.826 12.192 
2 Hrs. 3 4 2.952 0.455 1. 2.957 5.048 
3 Hrs. 2 3 1.952 0.455 I. 1.957 4.048 
4 Hrs. 1 2 0.952 0.455 1. 0.957 3.048 
5 Min. 10 60 7.602 22.756 50. 7.831 112.398 
6 Min. 1 10 0.568 4.096 9. 0.610 19.432 
7 Sec. 25 60 23.322 15.929 35. 23.482 96.678 
8 Sec. 11 25 10.329 6.372 14. 10.393 39.671 
9 Sec. 5 11 4,712 2.731 6. 4.740 17.288 
A Sec. 1 5 0.808 1.820 4. 0.826 9.192 
B Sec. 0.046 1 0.000 0.434 0.954 0.004 2.000 

Summary 

The simple one-parameter timeliness model does not represent the decay of 

value well. The Weibull seems to not represent loss well either. Of the three, the 

two-parameter exponential represents probable loss best. For this reason, the two-

parameter exponential timeliness model is used in this paper. Table A.l lists reference 

times for T2{t) and all twelve V codes. 
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APPENDIX B. AUTOCORRELATION 

The output of a queueing system simulation is similar to that of any other 

stochastic experiment except that it is autocorrelated. That is, each outcome is 

strongly influenced by its predecessors. This complicates analysis, since it increases 

both the variance and bias of most estimators and reduces the independence of 

independently-seeded replicates. These complications tend to lead to much longer 

simulation runs than if autocorrelation were not present. In addition, it frustrates 

efforts to estimate the shape of F(<). Notation introduced in this discussion is sum­

marized in Table B.l 

Selected Properties of Simple Queueing Systems 

Before discussion autocorrelation, first consider the following properties of a 

single-server queue in which arrivals follow a Poisson distribution and service times 

follow some independent general distribution. Such systems are denoted (M/G/1) 

systems in Kendall notation. In spite of their simplicity, they serve to illustrate 

numerous features of C^I system. All examples in this chapter are variations of the 

(M/G/1) queue. 
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Table B.l: Autocorrelation Notation 

Term Notation 

{Yi-, i = 1,.. • j f*} - An output sequence from a simulation. 

*0 - The point, beyond which the sequence may be con­
sidered covariance-stationary 

r(fc) - The lag correlation of and for a covariance-
stationary process. See (B.9). 

- The variance of VJ-, i = ig,. • •, n. 

C • The critical lag, equal to the sum of all correlation 
coefficients, r(k). See (B.13). 

f { k )  - The sample estimate of r(fc). See (B.14) 
IXj t  i = 1,.. - A sequence of batch means derived from {V^}. 

9 - The Von Neumann statistic. See (B.16). 
{Zi \  % — 1 f * * .,n} A sequence of cumulative means derived from {Vj}. {Zi \  

Su{k)  The difference between the n-th and 6-th cumulative 
means. 

Tn{ i )  A standardized sequence, derived from Sn{k) .  See 

h 
(B.21). 

h Schruben's test statistic. See (B.22). 

h The point beyond which the sequence {Kj} is essen­
tially covariance-stationary and free of the effects of 
the initial conditions. 
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Distribution of residence time 

The residence time T is the time a customer spends waiting for service, Tq, plus 

the time it spends in service, T3. The Laplace-Stieltjes Transform (LST) maps a 

probability distribution (in t) to the complex plane (in a) with the function 

The LST of the residence time in a (M/G/1) queueing system is [46, §5.1.6]: 

where B*(s )  is the LST of b{ t ) ,  the service time distribution. For example, if the 

service time follows an Erlang distribution with k phases and overall mean then 

w since B*(a; k,ii) = ( | ̂.nd A = f ip ,  

W ' ( s - ,p ,k , ^ )  = — . -4 (B.2) 

1 - p  

with 

a(n- ,k , f i ,p )  =  

noting that = 0. 

Moments of residence time 

.0-(N + L)F](̂ ) 

In simple cases, such as when service time is exponential, one may easily invert 

(B.l) to obtain the distribution of residence times. In other cases, expansion of 

shows that 

(B.4) 
6=0 
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Once again, if service time is Eriang-A, then 

_ fe(2 — p)  +  p 
2k f i { l  — p)  

t.rm2i, 1 2[a{l-,kyfi,pf-a{0',k,fi,p)a{2',k,/i,p)] 
I*-"'"' = <5^2 ' 

Thus, the coefRcient of variation 

(p{p ,k )  =  , 2a(0H2) 

' ~ W  

1 _  ~  1)(1  -  P)  [3 fc  -  ik  -2)p]  ,g  

3[2ifc-(ifc-l)p|2 

is clearly less than one, increases with p,  decreases with k ,  and is independent of 

fi. Figure 3.18 Page 119 shows y as a function of p for selected k. Note that the 

coefficient of variation is low only if the service time distribution has low variance 

and the offered load is also light. 

The Nature of Autocorrelation 

Let {Y^,i = l,...,n} be an output sequence from a simulation. The autocor­

relation is a measure of the degree to which a given is similar to its neighbors. 

Let 

If there exists some ZQ, such that the autocorrelation is independent of i  for I > ZG, 

the process is said to be covariance stationary beyond ig. For such sequences, the 
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lag autocorrelation function is defined as: 

r{k)  =  Corr[y j , y^^ j j . ]  i  =  iQ, . . . ,n  — k  (B.9) 

From its definition, r(0) = 1, r (—k)  =  r(k )  and —1 < r (k )  <  1. Also, if a process is 

covariance stationary, then since cry, = Varfyj] = Cov[l^*, VJ], cr^. is independent 

of t and 

(Ty  

=  r{k)  (B.IO) 

where Oy = Var(y^); i  =  iQ, . . . ,n .  

The properties of r{k)  in queueing systems are discussed in [51, 52, 53, 54]. 

Among other results, these show that in stable queueing systems r{k) is positive, a 

monotonically decreasing function of k and r(k) = 0. 

The Effects of Autocorrelation 

Inflation of estimator variance 

If one estimates a parameter by the sample mean ( Y )  and its generating process 

is covariance stationary, then following the argument in [55, p. 304], the variance of 

the estimate is 

Var 
« • I'-D'-) 

J_ 
^2 

•  N  N- l  N 
Z Var(y^) + 2 E E Cov{Yk,Yj) 
z=l 6=1 j=k+l 
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J_ 
n2  

- J  

• o ^-1 o • 
N<Tp + 2 ^ (TV - k)<TYr{k) 

k=l 

N- \  

E 
k=-{N- l )  

N- \k \  
N 

r{k)  (B.ll) 

If N is sufficiently large, limj^_^QQ r{k)  =  0 implies that: 

,2_ oo 
E r(&) 

k=~oo 
Var(F) « ^ (B.12) 

providing, of course, the infinite sum converges. Denote the critical lag 

A  oo  
£ = E r(&) 

k——oo 
(B.13) 

It is clear from (B.12) that C  represents the average number of that are needed to 

obtain the equivalent of a single independent observation. 

Initial bias 

Each simulation run must begin in a well-defined state. The autocorrelation will 

cause the effect of that state to persist for some time. If the initial state is one of 

low probability, then the initial values of will be biased. Furthermore, since the 

system is not in steady-state, Corr(}^, 1^^^) is not independent of i and (B.ll) is 

not valid. This is a concern in non-terminating simulation. 

Reduction of independence between replicates 

If independently-seeded replicates start in a common state, the autocorrelation 

will cause the of different replicates to be correlated. This is also a concern in 

non-terminating simulation. 
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Estimation of Autocorrelation and its Effects 

Sample estimates of critical lag 

Because of the central role of r{k)  in queueing system analysis, numerous meth­

ods have been presented to estimate its extent. For example, one can use the sample 

autocorrelation function 

m é G 

where 

i=l ^ 

to estimate r(&) although it tends to severely underestimate r{k)  if N is too small [56, 

p .  241f f ] .  One  can  then  es tab l i sh  a  t r ia l  va lue  of  C to  group  the  in to  N = [^]  

batches with mean values A'j,^"2,..., If the Xj are in fact uncorrelated, the 

expected value of the Von Neumann statistic 

W-l . 

^ — (B,16) 

3=1 

2 

will be equal to 2. The hypotheses that Corr(Aj,Xj^i) = 0 is rejected if q { { x j } )  is 

smaller than 

û,a = 2 -Za^  (B.17) 
(JV-l)(Ar + i) 

where Za is the upper a probability point of the standard normal distribution. Fish-

man [57] has reported that this test seems valid for N as small as 8, but noted 
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problems in coverage when traffic intensity is high. For this reason, Kleijnen [27, p. 

67] recommends that N be at least 100. 

Queueing theoretic estimates of critical lag 

Pagurek and Woodside presented a method to compute £ in a wide variety 

of (GI/G/1) queueing systems [54]. Using their reasoning, one can show that in 

(M/G/1) systems, 

- - "T';sr" 
The analyst can use this result together with an approximate queueing characteriza­

tion of the path(s) under consideration to estimate the mean value of £. 

For example, consider the (M/D/1) queue, in which service time is fixed. From 

(B.6) and (B.6), E(r) = 2i^(l-p) '••nit-.oo ' Thus, 

l™)t^ocVar(r) = From (B.4), Um^^^EIrS) = Thus, 

for the (M/D/1) model, 

Figure 3.18 on Page 119 illustrates E[r], ip ,  and C as functions of p with = 1 in 

the (M/D/1) queue. Note that even with Ts fixed, C rises very quickly with p and 

affects output long before the system becomes congested. 

Sample estimate of the extent of initial bias 

There is no shortage of methods to detect the initial transient. Unfortunately, 

most of them do not work [39, 40, 41]. Schruben, however, has presented a promising 
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approach together with some validation in [58]. Basically, the method is to estimate 

/Q by examining a visual trace of the composite of several replicates and then test 

the estimate for sufficiency. 

Define to be the cumulative mean of the first i  observations. Schruben models 

the Zi as the sum of a signal due to a shift in the mean plus random noise. The 

possible signal is detected by transforming the to a standardized Brownian bridge. 

The series 

0 if t = 0 

is an estimate of the mean cumulative bias after considering Vj,..., from a sample 

of size n. Define the critical value of t to be the smallest one that maximizes the 

standardized test sequence 

A (B.21) 
Oyjn  

Here t  =  ̂  i s  standardized so that 0 < ^ < 1 and <r is the variance of the random 

noise. Since n and a are fixed in value, the maximum of a) occurs at the largest 

va lue  of  kSn{k) .  

Define, k  to be the smallest value oik  =  1,2,...,» that maximizes kSn{k)  and 

let s = [58, §3.1] shows that 3Â^ has an approximate distribution when 

no initialization bias is present, where 

s2 
h ê 

30'2{(1 — i )  

n2j2 

3&2&(i — k)  
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The analyst may use this to form one- or two-sided tests for bias. 

Computing h requires an estimate of a. Because of this, Schruben also presents a 

simpler ratio test. The fe-ratio test computes h j from the first half of the output and 

ha from the second. Under the hypothesis that is the same in both sub-samples, 

h f  
the ratio has an approximate F-distribution with 3 and 3 degrees of freedom. 

hs  

To assure proper coverage, Schruben recommends that one compute hj and hs 

from two independent samples. To achieve sufficient power, he recommends that each 

sample be a composite of at least five independently-seeded runs. Finally, to reduce 

the effect of noise, he recommends that the be serially grouped into batches of 

about five prior to computing the Zj. 

Estimates of loss of independence 

At present, there does not seem to be a practical test for initial correlation among 

the independently-seeded replicates. Analyst could use the Von Neumann statistic, 

for example, but they would need about 100 replicates. Usually, the analyst simply 

examines smoothed traces of system performance and revises /Q upward correlation 

between replicates seems to persist beyond the region of initial bias. 
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APPENDIX C. SUPPLEMENTAL DETAILS OF EXAMPLE 2.1 

The following describes details of Example 2.1 that were not essential to the 

main discussion. The methods follow those described in [14], except where they are 

modified or augmented by the proposed method. 

Problem Translation 

Conversions This section derives the values in Table C.l A crucial part of 

subjective probability. At this time, all CDB data is given as point values with no 

measure of precision. For the sake of discussion, assume all true values are within 

±20% of the stated value with 95% subjective probability. The translation of call 

frequency in calls per day to mean interarrivai time in seconds is straightforward. 

The range is derived from the limits of the arrival rate. The method to convert 

service times depends upon the type of call. Data messages would be transmitted in 

packets. Assuming there is a twenty percent overhead for the packet and signaling, 

the mean service time per message in seconds would be: 

Modeling Phase 

the proposed method is that all data is stated as intervals with some presumed 

, ^ 1 second 
X 1.2 X ——r— 

9600 bits 
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where m is the message length in kBytes, stated in Table 2.2. In the case of voice 

traffic, [14, Appendix B, p. 8] states that one minute of conversation is equivalent 

to one thousand bytes. Hence, the service time for voice messages in seconds is just 

60m. 

Caller behavior Time between recalls and deadlines are not addressed in the 

CDB. Because data traffic simply queues, the mean time between recalls. Or, affects 

only voice traffic. Table C.2 lists assumed ratios between and the time between 

recalls. Let the mean time between recalls Or = (^fcoF- Because Or depends upon 

two CDB parameters, its subjective probability is 0.90. Deadlines affect all traffic. 

Let be the time at which V(<) = 0.05. In the case of the T2(<) model, 

- ^0~*^" ( " j " ) -  (C .2 )  

Uncertainty An important element of the method is the assumption that all 

C^ data is stated as intervals. At this time, there is no presumed precision for CDB 

parameters. For the sake of this example, assume experts have agreed on intervals 

for all values are ±20% with 0.95 subjective probability. 

If the arrival rates and call lengths vary ±20%, the interarrivai and service rates 

will also vary about ±20%. However, assuming the recall factor and T^ vary ±20% 

implies Br will vary from —36% to +44%. Finally, if only and vary ±20%, so 

will However, since 2" can also vary, the range of varies as shown in Table C.l. 

Finally, assume distributions are gamma with 0.5 < y < 1.5. 
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Table C.l: Traffic Specifications, in Seconds, for Example 2.1 

Mean Mean Mean 
Time Message Time Deadline 

Need Between Service Between k) 
Line CaUs« & Time® ^ Recalls^ ^ 

k) 

(0 k) K) Low 1 Nominal High 

1 3600 480 300 4400 6440 10000 

2 21600 4320 3600 10460 14200 19770 
3 90 20 - 696 940 1333 
4 360 75 - 4080 5500 7730 
5 21600 1920 1800 7580 10600 15450 
6 90 32 - 696 940 1333 

7 180 16 - 616 770 924 
8 21600 2880 3600 10450 14200 19770 
9 18 4 - 26 34 46 

10 36 8 - 62 82 112 
11 3600 24 300 4400 6440 10000 

12 1800 120 300 4400 6440 10000 

13 60 4 - 753 1110 1742 

14 120 12 - 4080 5500 7730 

15 1800 96 . 30 753 1110 1742 
16 72 4 - 696 940 1333 

17 180 8 - 4080 5500 7730 
18 7200 120 3600 7200 9500 12730 
19 180 240 6 27 38 56 
20 9 4 - 12 17 25 

^Accurate to ±20% with subjective probability 0.95 

^distribution is gamma with ip € [0.5,2] and nominal value 1.0 
^Accurate —36% to +44% with subjective probability 0.90 
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Table C.2; Cost of Failure Parameters 

Cost Recall Factor Importance Weight 
of (^COF) m 

Failure Low Nominal High Low Nominal High 

I 0.40 0.50 0.60 1.00 1.00 1.00 
C 0.80 1.00 1.20 0.25 0.50 0.70 
E 1.80 2.00 2.40 0.06 0.25 0.50 

Bounding system parameters 

Task completion time is the sum of two random variables; 71s, the service time 

and Tq, the queueing time. The service time is a characteristic of the needline and is 

not affected by the load. The queueing time, however, is a function of the path the 

needline uses and the total load offered to each node along that path. Although an 

individual needline's queueing time may be affected by its recall rate and deadline, 

it is more strongly affected by the combined set of call initiations and service times 

for all needlines using its shared resources. Three elements affect each needline's 

contribution to the load. The first is the service time distribution, the second the 

queueing time distribution, and the third is its timeliness function, which affects its 

recall rate and deadline. One would expect that the contribution of a needline to 

the load would depend upon which resources it requires and be in proportion to its 

relative arrival rate and mean service time. 

Table C.3 lists the utilization factor for each needline. Utilization is the 

ratio of the mean service time to the mean time between calls. Although this figure 

ignores the effects of queueing and recalls, it is a measure of the relative impact 

of each needline and how busy each resource can get. Table C.3 also lists relative 

utilization, a measure of how much a needline affects performance within its class. 
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Table C.4 shows the effects of these needlines on the key resources, varying the input 

and service rates by ±20%. 

First Screening 

Experiment design 

The parameter array The parameter, or inner, array represents possible 

network models. M represents the call-back method, with -1 representing the random 

call-back option and 4-1, automatic call-back. V represents the number of voice 

channels and D the number of data channels. Since this is a screening stage, the last 

two fac tors  cou ld  be  a t  two leve ls .  However ,  a  min imal  des ign  in  which  the  M xV 

interaction would be distinct requires eight runs. The modified Lg array from [59], 

and techniques from [38] and [27] in Table C.5, allows tests of the latter two factors 

at three levels while leaving all two-factor interactions distinct. 

Considering the maximum load in Table C.4, the least reasonable value of V 

and D is three. The other values were six and nine. The design will show the 

main effects of the call-back method and number of each kind of trunk as well as 

the interaction between method and number of trunks. Although M would not be 

expected to interact with D nor V with D, as shown in Table C.5, one can test for 

these interactions. 

The noise array The noise, or outer, array represents variations of the 

offered load in this experiment. At this stage, the analyst one can consider each 

needline at the two extremes of offered load. All load parameters'associated with 

each needline will be considered as a single factor with two levels, corresponding to 
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Table C.3: Absolute and Relative Utilization Factors 

Utilization Factor { p )  
Absolute Relative 

Need All Trunk Calls All Trunk Calls 
Line Calls Total Voice Data Calls Total Voice Data 

1 0.133 — — — 0.033 — — — 

2 0.200 — — — 0.049 — — 

3 0.222 — — — 0.055 — 

4 0.208 — — — 0.051 — 

5 0.089 0.089 0.089 — 0.022 0.030 0.058 
6 0.356 0.356 — 0.356 0.088 0.122 — 0.258 
7 0.089 0.089 — 0.089 0.022 0.030 — 0.065 
8 0.133 — — 0.033 — — — 

9 0.222 — — 0.055 —— 

10 0.222 0.222 — 0.222 0.055 0.076 0.161 
11 0.007 — — 0.002 — — 

12 0.067 0.067 0.067 — 0.016 0.023 0.043 — 

13 0.067 0.067 — 0.067 0.016 0.023 — 0.048 
14 0.100 0.100 0.100 0.025 0.034 — 0.073 
15 0.053 0.053 0.053 — 0.013 0.018 0.035 
16 0.056 0.056 — 0.056 0.014 0.019 — 0.040 
17 0.044 0.044 — 0.044 0.011 0.015 0.032 
18 0.017 — — — 0.004 — — 

19 1.333 1.333 1.333 — 0.328 0.457 0.865 
20 0.444 0.444 — 0.444 0.109 0.152 — 0.323 

Total 4.063 2.920 1.542 1.378 1.000 1.000 1.000 1.000 
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Table C.4: Lower Bounds on Resource Utilization Under Various Loads 
in Example 2.1 

Offered Load and Utilization 
Low Limit Nominal Value High Limit 

Resource Capacity Load P Load P Load P 
Node A 10 1.56 0.156 2.34 0.234 3.51 0.351 
Node B 5 0.74 0.148 1.11 0.222 1.67 0.334 
NodeC 5 0.88 0.176 1.32 0.268 1.98 0.396 
NodeX 20 1.43 0.072 2.15 0.108 3.23 0.162 
Node Y 20 1.33 0.067 2.00 0.100 3.00 0.150 

3 1.03 0.343 1.54 0.513 2.31 0.770 
Voice Trunk 6 1.03 0.172 1.54 0.257 2.31 0.385 

9 1.03 0.121 1.54 0.171 2.31 0.257 
3 1.19 0.397 1.78 0.593 2.67 0.890 

Data Trunk 6 1.19 0.198 1.78 0.312 2.67 0.445 
9 1.19 0.132 1.78 0.198 2.67 0.297 

Table C.5: The Inner (Parameter) Array for the First 
Screening Stage 

Factor Levels Interactions 
Point Treatment M V D M X y M X D D x V  

1 (1) - - - + + + 
2 Md + - 0 - 0 0 
3 D - - + + - -

4 Mv + 0 - 0 - 0 
5 vd - 0 0 0 0 0 
6 vD - 0 1 0 - 0 
7 V - + - - + -

8 Vd - + 0 - 0 0 
. 9 MVD + + + + + + 
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Table C.6: Factor Screening Levels 

Parameter 
Least 
Load 

Greatest 
Load Meaning 

9a  1.2^ao O.S^ag Mean time between arrivals. 

9s  0.8^30 1.20^0 Mean service time. 

9r  l.29rQ O.S^rQ Mean time between recalls. 

U 08% Recall deadline. 

<f>a 0.5 2.0 Coefficient of variation for the arrival 
distribution. 

<t>3 2.0 0.5 Coefficient of variation for the service 
distribution. 

the lightest and the heaviest probable load. The levels associated with these extremes 

are shown in Table C.6. Note that instead of examining extremes of Or and as 

consequences of V and Jg, the design simply considers variations of ±20% in their 

values. 

To further simplify the design, the analyst grouped the needlines by call type. 

Lq represents the relative level for all data calls, and Ly that of voice calls. A full-

factorial design with two groups requires only four points. Yet, with this noise array, 

the analyst can test the assumption that data and voice traffic do not interact. 

Simulation results 

Each of the 36 sample points was simulated for five independently-seeded runs of 

about 24 simulated hours each. Five replicates of each point were needed in order to 

have sufficient power for Schruben's F-ratio test. In no case did exceed 1% of a run. 

The 24-hour period was necessary to give the infrequent voice traffic a chance to enter 

into the simulation. In most cases, the 24-hour runs were sufficient to determine Z/j. 
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However, in eight cases, the runs were lengthened to no more than 30 simulated hours 

to provide enough observations for Von Neumann's test of independence. Finally, in 

each replicate, the first 1% of the observations were discarded and the remainder 

batched to produce twenty observations per replicate. These were analyzed through 

The variation within each replicate was much less than that between the repli­

cates. The cause of this is uncertain. One possibility is that the infrequent voice 

calls introduced a correlation that was masked by the data calls. Another is that the 

Von-Neumann statistic has insufficient power, even with 100 points. A third is that 

"overbatching" may have reduced the sample variance. Regardless, a conservative 

approach was taken, treating the average of the twenty observations in each run as a 

single observation. 

The obvious question was, would this reduction in the number of observations 

significantly reduce the power of the ANOVA? The Type II error of ANOVA can 

be determined from [60] as follows. First, the non-central F distribution depends 

upon 1/2, the denominator d.f., and Tang's non-centrality parameter. Because the 

distribution is essentially unchanged for any f/g > 90, the drop from 884 to 164 d.f. 

had no great affect on tables values. Next, for a main effect, Hg: = 0, z = 1,..., 

where i  is the number of levels of factor /? and N is the total number of observations. 

For a crossed effect, Hg: 7j j = 0, i = 1, ...,£, j = 1,..., m. 

SAS. 

(C.3) 

<l >{ r ,N , i ,Tn ,a )  =  

lyr (  m 7?. 
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Table C.7: Analysis of Variance of the Screening Results for Exam­
ple 2.1 

Type III 
Sum of Mean 

Source df Squares Square F Value Pr > F 
Model 15 0.074946 0.00499 55.51 0.0001 
Error 164 0.014761 0.00009 
Corrected Total 179 0.089707 
M 1 0.003746 0.003746 41.62 0.0001 
D 1 0.000486 0.000486 5.40 0.0213 
D x M  1 0.000023 0.000023 0.25 0.6145 
V 1 0.001468 0.001468 16.31 0.0001 
V xM 1 0.006330 0.006330 70.32 0.0001 
D x V  1 0.001327 0.001327 14.75 0.0002 
L\  1 0.000026 0.000026 0.29 0.5886 
M X L\  1 0.000040 0.000040 0.44 0.5077 
D X Ly 1 0.000070 0.000070 0.78 0.3792 
V X L\  1 0.000233 0.000233 2.59 0.1095 

1 0.013139 0.013139 145.97 0.0001 
M X Lo 1 0.000006 0.000006 0.06 0.8049 
D X Lj)  1 0.011963 0.011963 132.91 0.0001 
V x L o  1 0.000037 0.000037 0.41 0.5228 

L\  X L d 1 0.000067 0.000067 0.75 0.3891 

Let the sum in either case equal unity. That means the region of acceptance for the 

Type II error is a hypersphere of radius a. In this case, the Type II error for all single 

factors and most crossed factors is essentially zero. That for the D xV interaction, 

however, is about 19%. Since this effect is significant, the Type II error is very small, 

in spite of the loss of 720 degrees of freedom. 
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Table C.8: Sensitivity of Mean Timeliness at Nominal Values of Oa 
and J in Example 2.1 

Needline On Task? Call Type COF Code Sensitivity 

1 Yes Voice I 0.001 
2 Yes Voice I 0.000 
3 Yes Data C 0.027 
4 No Data C 0.007 
5 Yes Voice I 0.000 
6 Yes Data C 0.027 
7 No Data E 0.007 
8 Yes Voice I 0.000 
9 No Data C 0.136 

10 No Data C 0.068 
11 Yes Voice I 0.001 
12 Yes Voice I 0.003 
13 Yes Data I 0.081 
14 No Data C 0.020 

15 Yes Voice I 0.003 
16 No Data C 0.034 
17 Yes Data C 0.014 
18 Yes Voice C 0.000 
19 No Voice I 0.027 
20 No Data I 0.543 
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Second Screening 

Experiment design 

Although the second screening still concentrates on estimating Es[T(r)] with 

P£, it differs from the first in four ways: 

1. The range of the number of trunks is smaller, 

2. The range of the noise effects is reduced, 

3. The sensitivity of Es[7'(T)] to T{T)  is checked, 

4. The simulation analysis is more efficient, and 

5. The baseline model is examined: 

These differences are explained below. 

Number of trunks The first screening suggests that the greatest gain in 

per formance occurs for 3 < D < 6 and that D has a much greater effect on p£ than 

V. This suggests that the eight-trunk option may be cost-effective. In the second 

screening, C = 8, 4<D<6 and V = 8 — D. The design, shown in Table C.9, is 

a full-factorial balanced design that considers A/, D, and M x D. Also, this design 

has one-third fewer rows than the first screening. This causes Type II error for the 

M X D, D X Lj), and D x L\ interactions to increase to about 4.5%. The Type II 

error for the single factors and other interactions are still nearly zero. 

Load range Assume that the analyst, troubled by the large effect of load 

changes on asks experts to investigate the load levels for four high-traffic 
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Table C.9: The Inner (Parameter) Array for the 
Second Screening Stage 

Point Treatment 
Factor Levels Interaction 

Point Treatment M D M x D  
1 (1) - - + 
2 M + - -

3 d - 0 0 
4 Md + 0 0 
5 D - + -

6 MD + + 

need lines. The results are shown in Table 2.6 on Page 62. Although there was no 

improvement for Needline 6, the other three account for nearly 70% of the total and 

data loads. 

Sensitivity of Es[T(r)] to T{t )  In the former screening, one could test 

the sensitiv i ty  of  Es[T(7 ' ) ]  to  changes  in  J ,  bu t  no t  the  sens i t iv i ty  to  models  o f  T{t )  

which change <£. In the second screening, the analyst assumes and t can both vary 

±20%, which means can vary ±20%. Each estimate of p£ is measured at 0.8<^, 

and Note that since Cj = [^q + <(1 — V^)] [<o ~ its value is the same 

for all three points 

Efficiency Except when D = 6 ,  the parameter points are within the extremes 

of the first model. Because the results of the first screening were so uniform in nature, 

each replicate was run for fifteen simulated minutes (about 1% of a 24-hour day), then 

after statistics were discarded, run for 24 additional simulated hours. The resulting 

replicate averages were comparable to the initial screening results. 
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Baseline Model It seems that there is slight improvement beyond six data 

trunks. If this is true, then the eight-trunk model is viable. To check this assumption, 

baseline runs were made, with scheduled recall and V — D = 99. Since there were 

never more than 50 calls in this model during simulation, these runs represent the 

very best possible trunk configuration. The Es[T(T)] for this model is the standard 

of performance. 

Simulation results 

The results were more mixed in the second screening than in the first. Table C.IO 

displays the chance probabilities for all six estimated quantities. The data load seems 

to have a great effect and may dominate the over-all results. If t£ is reduced too 

much, its effect is also significant. Parameters and the voice load seem to have little 

consistent effect. On the other hand, the results imply the eight-channel trunk could 

be a cost-effective choice. 

Figure 2.18 on Page 63 and Figure C.l illustrate these results graphically. Fig­

ure 2.18 illustrates the baseline and model levels for Es [7(7)]". Comparing these 

levels shows the eight-channel trunk delivers very high effectiveness. Figure 2.18 

shows the data load affects Es[T(r)]"~ more than the voice load, but much less than 

in the first screening. 

Figures 2.19 and 2.20 on Pages 63 and 64 illustrate the effect of different timeli­

ness and effectiveness models on E[V(r)]~. Changing the importance ratio reduces 

the value of the estimate, but increasing simultaneously increases both Es[T(r)]~' 

and its variance. In either case, the effects of uncertainty in the effectiveness model 

are about the same as those due to sampling variance and offered load. 
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Table C.IO: Analysis of Variance of the Second Screening Results 

Source df 

Probability That Effects on Es[T(T)] are Due to Chance 

Source df 

At 0.8 X <£ At t£  At 1.2 X t£  

Source df 1=1 H
 

II o
 

1=1 H
 

II o
 

1=1 J=C 

Model 10 0.0001* 0.0001* 0.0001* 0.3475 0.0001* 0.0001* 
M 1 0.7491 0.6601 0.9128 0.7568 0.9509 0.7729 

D 1 0.1901 0.2128 0.01 lot 0.2206 0.0002* 0.0884 
D X M 1 0.4691 0.8507 0.5593 0.9879 0.5629 0.9504 

Z-v 1 0.0434t 0.5314 0.0152t 0.3670 0.0154+ 0.3535 
M y.  Ly  1 0.7154 0.6392 0.7932 0.5414 0.9864 0.4884 
D y,  Ly  1 0.0289t 0.6683 0.0090^ 0.5373 0.0061Ï 0.5033 

LD 1 0.0001* 0.0001* 0.0003* 0.8515 0.0071Ï 0.0001* 
M X Lj)  1 0.7411 0.6266 0.7546 0.7694 0,6642 0.5566 

D X Ld  1 0.020lt 0.8399 0.0437t 0.7873 0.0623 0.6404 

L\  X Z/D 1 0.1153 0.4140 0.1430 0.1707 0.1352 0.020lt 

Superscript indicates significance at t = 5%, t = 1%, and * = 0.1% 

£8(71(1)1 
1.0 

D. Trunks: S 5 99 

CB Mode: R S S 

V Load: L 

D. Load: L 

5 5 99 

R S S 

î } 

L 

H 

5 5 99 

R S S 

î î I 

H 

L 

5 

R 

5 99 

S S 

1 î î 

H 

H 

Figure C.l: 95% Confidence Intervais for Load Effects on Es[T(T)] for Se­
lected Models from the Second Screening 
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Final Analysis 

The final phase is to compare the candidate systems. The figure of merit will be 

the amount of initial value that the system retains. This will be estimated through 

the two-parameter hybrid approximation EH[V(T)]. 

Procedure 

The experimental plan and models were identical to that of the second screen, 

except that both and ( were estimated for each of the twelve needlines that 

participated in the given task. Now 

E(V(riT(())|I„,A„,r„; n = l N] =  £ r„ E [T (?„)] (C.5) 

where n, Jn, An, and Tn are the needline's index, importance weight, arrival rate, 

and system time, respectively. Furthermore, the summation is over those needlines 

involved in the task and A = 12^=1 An- The next step was to estimate E[T(Tn)] for 

each needline from the and ( estimates and to estimate the weighted average of 
y  

timeliness, EJ[T(T)], as well as within each importance group. Then 

3 
Ê[v(r;T(())|l;,TF(,RJ; i= 1,2,3] =  ̂ • (C«) 

i= l  

This formulation allows the analyst to independently estimate the effect of changing 

% values. Finally, the portion of initial value retained was estimated by: 

ER[V(R)|E(V(T)L,II,AI; . = 1,2,3] = . (C.7) 
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Table C.ll: ANOVA Results for Eg[T(T')] at Nominal Importance Values 

Source df 

Probability That Effects are Due to Chance 

Source df At 0.8^0 and 0.8f At (Q and t  At 1.2<o and \.2t 

Model 10 0.0001* 0.0001* o
 

o
 

o
 

o
 

1—
» 

M 1 0.9542 0.9699 0.8393 

D 1 0.8064 0.1503 0.0152t 
D X M 1 0.5486 0.5985 0.4855 
Ly 1 0.8194 0.9652 0.3597 
M X Ly  1 0.2170 0.1013 0.1877 
D X Ly  1 0.6456 0.7348 0.2194 

Ld 1 0.0014* 0.0001* 0.0001* 
M X Lu  1 0.8198 0.7090 0.7690 
D X Ld 1 0.2728 0.4523 0.5821 

Ly X Ld 1 0.5037 0.3919 0.6427 

Superscript indicates significance at t = 5%, t = 1%, and * = 0.1% 

Results 

Table C.ll lists ANOVA results for ail three sets of /Q and t  at nominal values of 

2*^. Aside from the data load, relative effectiveness is not sensitive to model or load 

factors. Figure C.2 shows 95% C.I.s for Es[T(T)] at nominal values of <o> and Ij. 

The response of each model option is indistinguishable from that of the others as well 

as that of the baseline model. Also, all C.I.s exclude Es[T(T)] = 0.8. Thus, for the 

nominal T{t) function and values all six systems provide adequate effectiveness. 

Figures C.3 and C.4 show that at each load level, neither the recall mode nor the 

number of trunks affects the 95% C.I.s for Es[T(r)] significantly. 



www.manaraa.com

166 

Esmcni 
1.0 

0.9 

0.8 

0.7 

CB Mode; R S 

D. Tiunks: 4 

R S 

5 

Baseline 

R S 

6 

S 

99 

Figure C.2: 95% Confidence Intervals for the Model Effects on Es[T(T)] at 
Nominal Values of <Q, t, and 
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Figure C.4: 95% Confidence Intervais for the Offered Load and Number of 
Data Trunks Effects on Es[T(T)] at Nominal Values of ^g, i and 
l i  

Table C.12: Ê[V(T)] at Extreme Importance Values 

Probability That Effects are Due to Chance 
At Ii = 2.0 and Iq — \ .b  At J| = 16 and Jc = 4 

At O.S^Q At (g At 1.2/0 At 0.8/Q At /Q At 1.2/0 

Source df and 0.8f and Ï  and 1.2/ and 0.8/ and / and 1.2/ 

Model 10 0.0001* 0.0001* 0.0001* 0.0001* 0.0001* 0.0001* 
M 1 0.8639 0.8111 0.9729 0.6944 0.6596 0.6650 

D 1 0.8396 0.4286 0.0717 0.3438 0.019lt 0.0012* 
D X M 1 0.7515 0.8538 0.6469 0.3246 0.3205 0.3164 
L\ 1 0.8852 0.8130 0.3995 0.7631 0.6789 0.3455 

M X Ly 1 0.2860 0.1384 0.262 it 0.1501 0.0731 0.1238 
D X Ly 1 0.7538 0.9992 0.2776 0.5138 0.4193 0.1731 

LD 1 0.0042* 0.0001* 0.0001* 0.0004* 0.0001* 0.0001* 
M X Lj) 1 0.9427 0.7683 0.7626 0.7174 0.6859 0.8231 
D X Lu 1 0.3995 0.6145 0.7237 0.1465 0.2773 0.4190 

Ly X Z/D 1 0.6794 0.0010* 0.7373 0.3247 0.2894 0.5113 

Superscript indicates significance at t = 5%, ^ = 1%, and * = 0.1% 
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Figure C.5: Pseudo 95% Confidence Intervals for Model Effects on Es[T(7^)] 
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